

Engineering Critical Assessment of Vintage Girth Welds

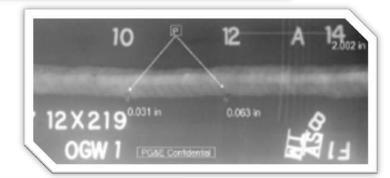
Fan Zhang PhD, Jing Ma PhD, Mark Van Auker Michael Rosenfeld PE Kiefner and Associates, Inc.

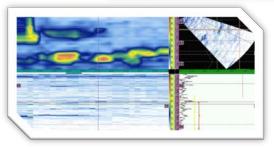
Thien-An Nguyen Pacific Gas and Electric Company

AGA Operations Conference, June 27, 2018 Washington DC

ENERGY & INDUSTRY DIVISION

1 Background


- 2 Approach of Engineering Critical Assessment
- **3** Regulatory Acceptance
- **4** Working Examples
- **5** Conclusions


Background – PG&E Efforts

- 1 Pacific Gas and Electric Company (PG&E) inspected girth welds excavated for direct examination or maintenance activities.
- 2 The purpose was to verify the quality of the girth welds and the accuracy of previous radiographic inspection.

- 1 Girth weld failures are infrequent occurrences within the US natural gas pipeline network.
- 2 Major girth weld failures are typically precipitated by **unusually large external loads** acting on an individual weld containing some sort of **imperfection** that is usually **not minor**.
- 3 Small imperfections are understood not to degrade a weld's ability to tolerate loads under usual conditions. API 1104 provide criteria for workmanship quality to allow some imperfections in a weld if they are not overly large or numerous.

- 1 The engineering critical assessment (ECA) process can be applied to situations including
 - development of alternative quality acceptance standards for new or existing welds not meeting the conventional criteria;
 - development of quality specifications for welds in pipelines expected to experience unusual loadings; or
 - development of load or strain limits in recognition of specific weld properties and quality.

1 Trans-Alaska Pipeline System (TAPS)

Audit discovery of noncompliant welding inspections and weld quality following the construction of the TAPS.

2 Department of Transportation (DOT)

Based on extensive fracture mechanics testing and analysis, DOT accepted the approach as an exception to the regulations at that time.

3 Appendix A in API 1104

Appendix A was first published in the 16th Edition of API 1104 in 1983.

4 Failure Assessment Diagram (FAD)

In the 20th Edition of API 1104, Appendix A incorporates the FAD method.

1 Special factors should be considered to adequately apply the ECA on vintage girth welds

Flaw Sizes

The accuracy tolerance should be considered in the imperfection/flaw sizes measured by nondestructive examination (NDE) techniques.

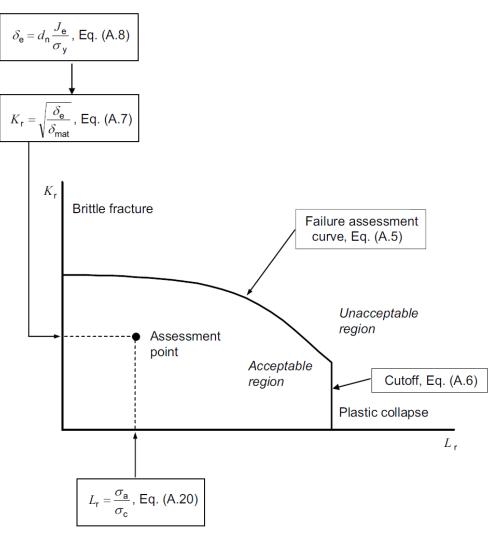
Material Properties

The information regarding the material properties of a vintage pipeline is generally very limited.

> Applied Stress

The longitudinal stress at the girth welds can be complex if the girth weld is near a bend, under road crossings, or connecting two joints with different wall thicknesses.

1 Background


2 Approach of Engineering Critical Assessment

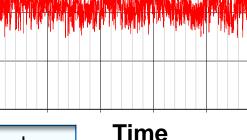
- Framework of ECA Failure and Fatigue
- Flaw Size
- Material Properties
- Applied Stress
- **3** Regulatory Acceptance
- **4** Working Examples
- **5** Conclusions

Framework of ECA – FAD for Failure

- > L_r ratio of applied stress (σ_a) over plastic collapse stress (σ_c)
- K_r ratio of elastic driving force at crack tip over material toughness
- 2 Crack is acceptable if the assessment point (L_r, K_r) is inside "Acceptable Region".

- An imperfection may grow under cyclic load and 1 trigger failure in the future.
 - Jger failure in the Turca. Fluctuation of internal pressure and a secondative criterion from

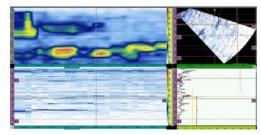
$$S^* = \sum_{i=1}^k N_i (\Delta \sigma_i)^3 \leq 5 imes 10^6 ext{ ksi}^3$$


S *	Spectrum severity factor (SSF)	Ni	Number of cycles
k	Number of cyclic stress levels	$\Delta \sigma_i$	Cyclic stress ranges

Vehicles crossing

Only for girth welds under a road crossing without casing. API RP 1102 recommends a fatigue endurance limit of 12 ksi for girth welds.

AGA Operations Conference 2018



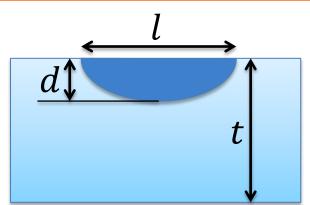
- 1 PG&E identified and measured the weld imperfections during in-ditch NDE
 - Radiographic Testing (RT) For all cases. Reliable for the detection and sizing of volumetric flaws. Accurately indicate the lengths of such flaws but not the radial dimensions.
 - Ultrasonic Testing (UT) Supplementary. Measure the radial dimension (height) and embedded depth. Effective for planar or crack-like flaws.
- 2 For cases with RT only (no UT)

It is conventionally assumed that the height of the flaw equals the thickness of one weld pass (**0.1 in** in U.S. / **3 mm** in Europe)

AGA Operations Conference 2018

Flaw Size – Tolerance of Accuracy

1 Length from RT


No tolerance needs to be considered for length to which the failure stress is generally less sensitive.

2 Height from UT

An tolerance of **0.02 inch** was considered for radial dimension/ height from UT[#].

3 API 1104 Appendix A

Appendix A has included an "assumed height uncertainty" as "**the lesser of** 0.060 inch (1.5 mm) and 8% of pipe wall thickness".

$$d_{\text{ECA}} = d + d_{\text{tol}}$$

$$d_{\text{tol}} = \begin{cases} 0 & d_{\text{API}} \ge 0.02 \\ 0.02 - d_{\text{API}} & d_{\text{API}} < 0.02 \end{cases}$$

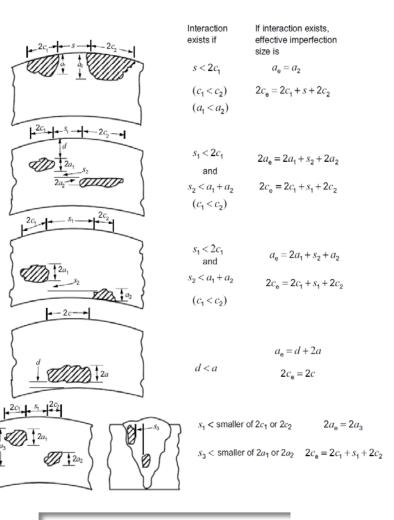
$$d_{\text{API}} = \min(0.08t, 0.060)$$

 $l_{\rm ECA} = l$

Units for d_{tol} and d_{API} are inches

Van Velsor, J., and Riccardella, S., "Stress Corrosion Cracking NDE Crack Truth Verification Inspection", PRCI, Catalog No. PR-335-143705-R2, November 10, 2015.

ENERGY & INDUSTRY DIVISION


201 201

Case 4

Case 5

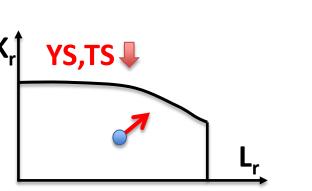
Flaw Size – Interaction of Multiple Flaws

The flaws within close proximity may interact and and result in lower failure stress. A Case 2 combined larger flaw should be used in the Case 3 ECA.

Figure A.11 in API 1104

1 FAD

The **decrease** of yield strength (YS) and tensile strength (TS) tends to move the assessment point in FAD toward the **upper-right** direction.


2 Weld vs Base

The strength of the weld metal is usually **superior** compared to that of the base metal.

AGA Operations Conference 2018

3 A conservative assumption

YS of weld metal = **SMYS** of base metal **TS** of weld metal = **SMTS** of base metal SMYS: specified minimum yield strength SMTS: specified minimum tensile strength

1 Crack-Tip Opening Displacement (CTOD)

ECA in API 1104 Appendix A uses CTOD to describe the material toughness. Unfortunately, the toughness in CTOD is not available for most pipelines.

2 To determine CTOD at the investigated girth weld

- CTOD test on similar vintage pipeline constructed using similar pipe and welding process, or
- Recommendations vs test results

СТОД	Comments
0.050 mm/0.0020 in	Minimum CTOD to avoid non-ductile fracture initiation and is conservative for most vintage pipes
0.066 mm/0.0026 in	Minimum CTOD from 42 CTOD tests on seven 1950s- vintage girth welds from PG&E's Line 132
0.195 mm/0.0077 in	Average CTOD from above tests

1 Resources

The failure at a girth weld depends on the longitudinal stress which may be generated by

- Normal operation
- Thrust forces near changes in piping direction
- Surface loading at road crossings

2 Stress Concentration Factor (SCF)

If the girth weld connects two pipes with different wall thicknesses, the mid-wall misalignment generates a SCF which can be calculated following Annex D of BS7910-2013.

1 Buried Straight Pipes

$$\sigma_{\rm L} = \nu \sigma_{\rm H} - \alpha E (T_{\rm o} - T_{\rm i})$$

2 Unrestrained Straight Pipes

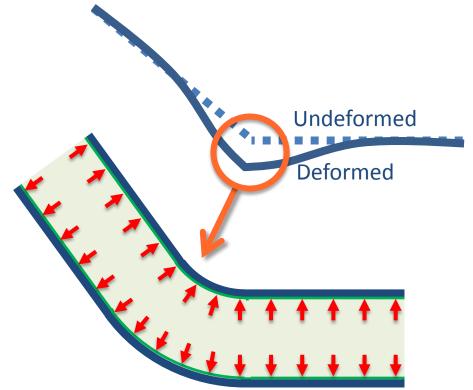
$$\sigma_{\rm L} = \sigma_{\rm H}/2$$

$\sigma_{ m H}$	Hoop stress due to internal pressure				
α	Coefficient of thermal expansion				
E	Elastic modulus				
To	Operating temperature				
T _i	Installation temperature				

Equations from ASME B31.8

ENERGY & INDUSTRY DIVISION

Applied Stress – Change in Pipe Direction



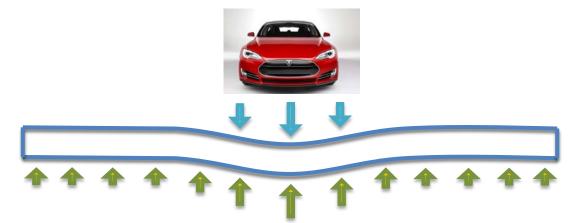
1 Description

Thrust force results in displacement at the bend and bending deformation in tangent pipes.

2 Calculation

The stress can be determined by an approach developed by Zhang and Rosenfeld[#].

Zhang, F., and Rosenfeld, M.J., "Longitudinal Stress in Buried Pipelines near Bends or End Caps", Journal of Pipeline Engineering, 17(2), June 2018, pp. 73-89.



1 Description

Loads on ground surface result in longitudinal stress in a pipeline buried underneath the road.

2 Calculation

The resulting stress can be determined by API RP 1102 or an approach published by Zhang et al. in IPC 2016[#].

Zhang, F., Branam, N., Zand, B., and Van Auker, M., "A New Approach to Determine the Stresses in Buried Pipes Under Surface Loading", IPC2016-64050, Proc. of the 11th International Pipeline Conference, Calgary, AB, Canada, Sep. 26-30, 2016.

- **1** Background
- 2 Approach of Engineering Critical Assessment
- **3** Regulatory Acceptance
- **4** Working Examples
- **5** Conclusions

1 API 1104 Appendix A is incorporated into 49 CFR parts 192, 193 and 195.

§192.24 "Inspection and test of welds", Clause (c) states: "*The acceptability of a weld that is nondestructively tested or visually inspected is determined according to the standards in Section 9 or Appendix A of API 1104. Appendix A of API 1104 may not be used to accept cracks.*"

2 California Public Utility Commission (CPUC) incorporates and supplements 49 CFR Part 192 in its General Order 112-F. (for PG&E)

- **1** Background
- 2 Approach of Engineering Critical Assessment
- **3 Regulatory Acceptance**

4 Working Examples

5 Conclusions

Example I –Information and Stress

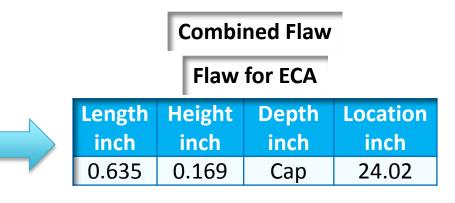
General Information					
Diameter	30 inches				
Wall Thickness	0.375 inch				
Grade	API 5LX X52				
Constructed	October 1954				
ΜΑΟΡ	590 psig				
Others	25 feet offset to an parallel road				
		•			

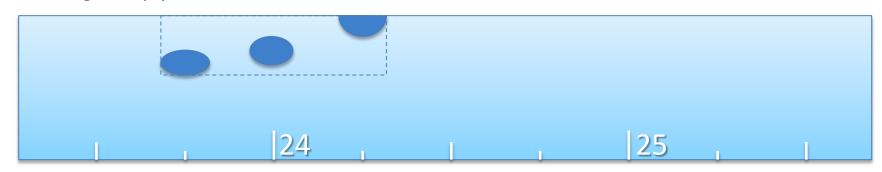
Longitudinal Stress at Girth Weld

From Internal Pressure	7.08 ksi
Thermal Stress	4.99 ksi
Bending of Pipe Axis	11.80 ksi
Traffic at Road Crossing	0 ksi
Total	23.87 ksi

Material Properties of Girth Weld

Yield Strength	52 ksi
Tensile Strength	66 ksi
СТОД	0.02/0.05/0.10 mm

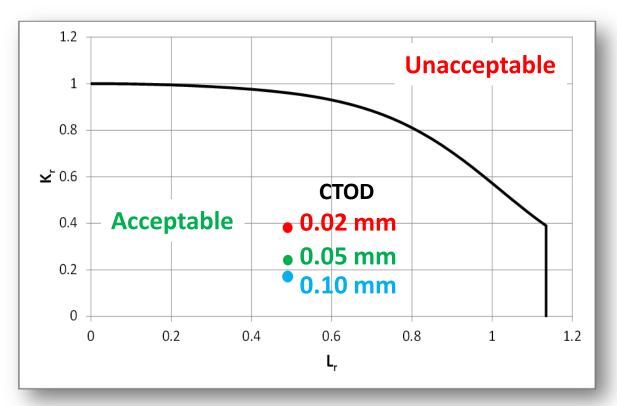

SX-001, 60" Long DSAW LSW @ 6.25" TDC SAW LSW @ 0.25" TDC


Indication of Flaws

No.	Length inch			Location* inch	
1	0.136	0.071	0.141	14.750	
2	0.328	0.100	Сар	23.0	
3	0.132	0.071	0.098	23.75	
4	0.128	0.075	0.080	24.0	
5	0.137	0.062	Сар	24.25	
6	0.128	0.067	0.048	48.0	
7	0.132	0.130	Root	49.5	
8	0.142	0.100	Root	75.5	

* "Location" is measured from the top of pipe and along the pipe circumference

 $0.08 \times 0.375 = 0.03$ inch > 0.02 inch No additional tolerance in height is needed



ENERGY & INDUSTRY DIVISION

1 FAD

The points for all three assumed CTODs are within acceptable region.

2 Fatigue

The spectrum severity factor (SSF) $S^* = 674 \text{ ksi}^3/\text{year} <<5 \times 10^6 \text{ ksi}^3$ (threshold).

3 Final Conclusion: Accepted

Example II

1 The girth weld was under an asphalt road and connected a straight pipe and a 90-degree elbow.

ENERGY & INDUSTRY DIVISION

AGA Operations Conference 2018

General Information

Diameter	12.75 inches	
Wall Thickness	0.219 inch – Pipe 0.375 inch – Elbow	
Bend Radius	1.5 x OD	
Grade	API 5LX X42	
Constructed	October 1971	
ΜΑΟΡ	650 psig	
Cover Depth	92 inches	
Backfill	Sand	

Longitudinal Stress at Girth Weld

Operational Stress after Considering Bend	12.67 ksi
Bending of Pipe Axis	11.80 ksi
Road Crossing	1.78 ksi
Sum of above	26.31 ksi
SCF due to Hi-Low	1.72
Used for ECA (Sum x SCF)	45.26 ksi

Material Properties of Girth Weld

Yield Strength	42 ksi	
Tensile Strength	60 ksi	
СТОД	0.02/0.05/0.10 mm	

Indication of Flaws

No.	Length	Height	Depth	Location	Turno	API 1104	Criteria
NO.	inch	inch	inch	inch	Туре	11 th Ed.	20 th Ed.
1	0.047	N/A	N/A	6	P ^(a)	Accepted	Accepted
2	0.031	N/A	N/A	10	Р	Accepted	Accepted
3	0.063	0.025	Сар	12	Р	Rejected	Rejected
4	0.078	N/A	N/A	31.5	IU ^(b)	Accepted	Accepted
5	0.500	N/A	N/A	39.5	ESI ^(c)	Accepted	Accepted

^(a) P: Porosity; ^(b) IU: Internal Undercut; ^(c) ESI: Elongated Slag Inclusion

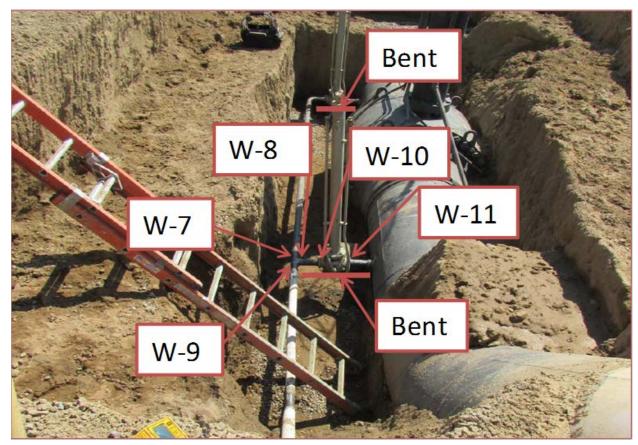
 $0.08 \times 0.219 = 0.0175$ inch < 0.02 inch

The NDE measured depth should add 0.02 - 0.0175 = 0.0025 inch for ECA

Flaw for ECA

Length		Depth	Location
inch		inch	inch
	0.0275	Сар	12

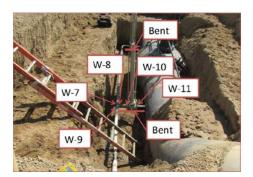
1.2 FAD Unacceptable The points for all 1 three assumed 0.8 CTODs are within **⊻** 0.6 acceptable region. CTOD Acceptable 0.4 0.02 mm 0.2 0.05 mm 0 0.2 0.6 0.8 1.2 0.4 0 1 1.4 L,


2 Fatigue

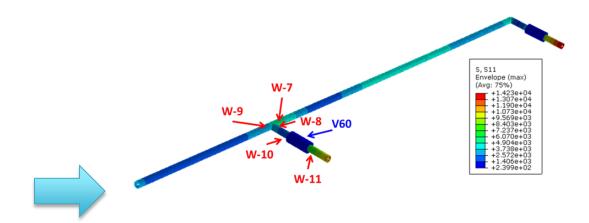
- The cyclic stress from live load = 1.12 ksi < 12 ksi (fatigue \geq endurance limit)
- The SSF $S^* = 478$ ksi³/year $< <5 \times 10^6$ ksi³ (threshold).
- 3 Final Conclusion: Accepted

Example III

1 five girth welds were located in a bypass line of a pig launcher inside a compressor station



Example III –Information and Stress



General Information

Diameter	2.375 inches
Wall Thickness	0.154 inch
Grade	API 5L Grd B
Constructed	July 2005
ΜΑΟΡ	1,040 psig
Cover Depth	68 inches
Backfill	Clay

Finite Element Analysis for Longitudinal Stress

Material Properties of Girth Weld

Yield Strength	35 ksi
Tensile Strength	60 ksi
СТОД	0.02/0.05/0.10 mm

ENERGY & INDUSTRY DIVISION

Indication of Flaws

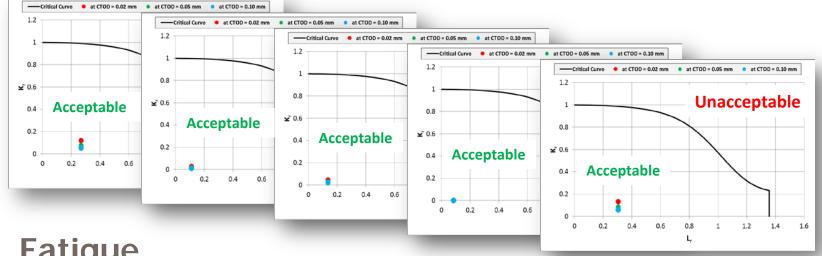
Girth Weld	Length (DP) inch	Height (UT) inch	Length (RT) inch
W-7			IP ^(a) : 1.217 P ^(b) : 0.048, 0.075
W-8	P: 0.250	P: 0.018- 0.020	P: 0.115, 0.056, 0.063, 0.029, 0.043, 0.123
W-9	P: 0.363	P: 0.068- 0.076	P: 0.044, 0.043, 0.132 CP ^(c) : 0.324
W-10			P: 0.042, 0.038, 0.061
W-11			P: 0.049, 0.064, 0.055, 0.049, 0.028

W-8 and W-9 Depth (UT) + 0.012 inch

W-7, W-10 and W-11 No UT. Height = 0.1 inch (one weld path)

Flaw for ECA

Girth	Length	Height
Weld	inch	inch
W-7	1.217	0.100
W-8	0.250	0.028
W-9	0.363	0.084
W-10	0.061	0.100
W-11	0.800	0.100


- ^(a) IP: Improper Penetration
- ^(b) P: Porosity
- ^(c) CP: Cluster Porosity

Example I – Results

1 FAD

All points are within acceptable region.

- 2 Fatigue
 - No vehicle passage and no fatigue from live load.
 - No pressure record was available. The maximum amplitude of cyclic stress was 21% of SMYS. No fatigue is expected at such low stress.

3 Final Conclusion: Accepted

- **1** Background
- 2 Approach of Engineering Critical Assessment
- **3** Regulatory Acceptance
- **4** Working Examples
- **5** Conclusions

- 1 ECA provides an alternative integrity assessment approach for girth welds with imperfections that failed workmanship criteria.
- 2 An ECA approach was provided in API 1104 Appendix A.
- **3** Considerations to apply ECA on vintage girth welds should include
 - Flaw size and measurement uncertainty
 - > Material properties
 - > Applied stress based on site-specific conditions
- 4 Three examples are provided to demonstrate the successful application of ECA on PG&E pipelines.

