

Final Report No. 14-017

Canadian Energy Pipeline Association (CEPA) Surface Loading Calculator User Manual

Mark Van Auker Bob Francini January 28, 2014

CEPA

Intentionally blank

Final Report No. 14-017

Final Report

Canadian Energy Pipeline Association (CEPA) Surface Loading Calculator User Manual

to

Canadian Energy Pipeline Association (CEPA)

on

January 28, 2014

Prepared by

Mark Van Auker and Bob Francini

Kiefner and Associates 6185 Huntley Rd, Suite J Columbus, OH 43229

Disclaimer

This document presents findings and/or recommendations based on engineering services performed by employees of Kiefner and Associates, Inc. The work addressed herein has been performed according to the authors' knowledge, information, and belief, in accordance with, commonly accepted procedures consistent with applicable standards of practice, and is not a guarantee or warranty, either expressed or implied.

The analysis and conclusions provided in this report are for the sole use and benefit of the Client. No information or representations contained herein are for the use or benefit of any party other than the party contracting with Kiefner. The scope of use of the information presented herein is limited to the facts as presented and examined, as outlined within the body of this document. No additional representations are made as to matters not specifically addressed within this report. Any additional facts or circumstances in existence but not described or considered within this report may change the analysis, outcomes, and representations made in this report.

Table of Contents

CANADIAN ENERGY PIPELINE ASSOCIATION (CEPA) SURFACE LOADING CALCULATOR USER MANUAL 1
BASIC DESCRIPTION
APPROACH
EQUATIONS
ANALYSIS – ENTERING CASE SPECIFIC DATA IN THE "GENERAL INPUT" TAB
Pipeline Information, Location, & Date Section
Select Units Section
Pipe Input Data Section
Soil Input Data Section
Miscellaneous Input Section
ANALYSIS – ENTERING CASE SPECIFIC DATA IN THE "WHEEL VEHICLE INPUT," "WHEEL VEHICLE 3- AXLE INPUT," "TRACK VEHICLE INPUT," OR "GRID INPUT" TAB
Wheel Vehicle INPUT
Wheel Vehicle 3-Axle INPUT
Track Vehicle INPUT
Grid INPUT11
ANALYSIS – "RESULTS" TAB
Summary of Input Information12
Summary of Output Information
Calculated Stress Data13
Pass/Fail13
QUICK REFERENCE INFORMATION
"Variable Tables" tab13
"API RP 1102 Fatigue Table" tab13
APPENDIX A – ADVANCED USER INSTRUCTIONS FOR USING THE "GRID INPUT" TAB A-1
APPENDIX B – LIST OF WORKSHEETS AND FUNCTIONS
APPENDIX C – EXAMPLE ANALYSES
Example 1 Scenario – Wheel Vehicle (3-Axle) crossing Pipeline A
Example 2 Scenario – Track Vehicle crossing Pipeline AC-7
Example 3 Scenario – Drum Roller (Grid INPUT) Vehicle crossing Pipeline B

List of Figures

FIGURE A-1: GRID POINT LOAD RELATION TO MEASUREMENT POINT	"Α″
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Canadian Energy Pipeline Association (CEPA) Surface Loading Calculator User Manual

Mark Van Auker and Bob Francini

BASIC DESCRIPTION

The CEPA Surface Loading Calculator is used to determine the stresses experienced by a buried pipeline as a vehicle traverses the pipeline at the surface. The program primarily uses the gross vehicle weight, size of the vehicle footprint (or ground contact area), and the pipeline depth of cover to calculate the load (or pressure) experienced at the pipeline depth. The calculated load is used to determine the corresponding circumferential and longitudinal stresses produced in the pipe. The stresses caused by the external load are combined with the circumferential and longitudinal stresses present under normal operating conditions in order to determine the equivalent stress experienced by the pipeline.

The program is capable of calculating three pre-loaded vehicle types:

- o 2-Axle, 4-Wheel vehicle ("Wheel Vehicle INPUT" tab),
- 3-Axle, 6-Wheel vehicle ("Wheel Vehicle 3-Axle INPUT" tab),
- Track vehicle ("Track INPUT" tab).

A custom vehicle type ("Grid INPUT" tab), in which the user creates and inputs an array of point loads representing a custom vehicle foot print or surface load is also capable of being analyzed.

APPROACH

As a vehicle traverses over a buried pipeline, the surface load is transmitted through the soil to the pipeline. The load experienced at pipeline depth is primarily a function of the depth of cover, gross vehicle weight, and size of the vehicle footprint (or ground contact area). The external load on the pipeline causes a deflection in the pipe cross section and local circumferential and longitudinal stresses, which combine with the circumferential and longitudinal stresses that are present under normal operating conditions. Resistance to the overall cross-section deflection (also known as ovalization) of the pipe comes from the stiffness of the pipe cross section, internal pressure, and lateral restraint from the soil that is in contact with the sides of the pipe. The Spangler and Iowa equations¹ have been generally accepted and incorporated into industry guidelines such as API Recommended Practice 1102 Steel Pipelines Crossing Railroads and Highways², and American Lifelines Alliance Guidelines for the Design of Buried Steel Pipe³ for calculating circumferential bending stress in buried pipe due to the deflection caused by external

¹ Spangler, M. G., & Handy, R. L. (1973). *Soil engineering* (3rd ed.). Intext Press, Inc.

² American Petroleum Institute. (1993). *API recommended practice 1102: Steel pipelines crossing railroads and highways* (6th ed.). Reaffirmed July 2002.

³ American Lifelines Alliance. (2001). *Guidelines for the design of buried steel pipe*. (with addenda through February 2005). Retrieved from <u>www.americanlifelinesalliance.com</u>

loads. The Spangler and Iowa equations both consider pipe stiffness but consider the effects of pressure stiffening and lateral soil restraint separately. The 'CEPA' equation⁴ effectively combines the internal pressure and lateral soil restraint deflection resistance terms into a single equation for circumferential bending stress. In the absence of internal pressure, the CEPA equation reverts back to the Iowa equation, and similarly it reverts back to the Spangler equation if lateral soil restraint is negligible. The CEPA equation is used in this analysis to calculate the circumferential bending stress due to surface loads.

The external load on the pipe also causes a local longitudinal stress. If the load is assumed to act over a finite area on the pipe surface, then it can be analyzed similarly to integral structural attachments to straight pipe as described in Secondary Stress Indices for Integral Structural Attachments to Straight Pipe⁵. The surface load can also cause an overall deflection of the pipe and the soil with respect to the pipe along with the soil outside of the influence of the surface load. The longitudinal stress as a result of overall pipe deflection is calculated using beam on elastic foundation principles.

The circumferential and longitudinal stresses that are present due to normal operating conditions are also calculated. These stresses are namely the circumferential (hoop) stress due to internal pressure, circumferential stress due to the weight of fill above the pipeline, longitudinal stress due to the Poisson effect of pressurized pipelines restrained in soil, the Poisson effect from the soil load, and longitudinal stress due to any temperature difference between the pipe at the time of installation and the normal operating temperature.

The circumferential and longitudinal stresses due to the normal operating condition and surface loading condition are totaled and compared to the allowable limits for each stress component given in the applicable design code^{6, 7, or 8}. The combined equivalent stress (Tresca or von Mises stress) is also compared to allowable limits. If the surface loading is expected to be frequent, then fatigue is also considered.

⁴ Warman, D. J., & Hart, J. D. (2005). *Development of a pipeline surface loading screening process & assessment of surface loading dispersing methods* (Final Report 05-44). Canadian Energy Pipeline Association (CEPA).

⁵ Dodge, W. G. (1974). *Secondary stress indices for integral structural attachments to straight pipe* (WRC Bulletin 198). Welding Research Council.

⁶ CSA Group. (2011). *CSA Z662-11: Oil and gas pipeline systems*. Ontario, Canada.

⁷ American Society of Mechanical Engineers. (2009). *ASME B31.4-2009: Pipeline transportation systems for liquid hydrocarbons and other liquids.* New York, NY.

⁸ American Society of Mechanical Engineers. (2010). *ASME B31.8-2010: Gas transmission and distribution piping systems*. New York, NY.

EQUATIONS

The pressure exerted on the pipe at pipeline depth due to a load at the surface can be calculated using Boussinesq's equation:

$$P_{live} = \frac{W_{live}}{D} = \frac{3 \cdot F}{2\pi H^2 \left[1 + \left(\frac{d}{H}\right)^2\right]^{2.5}}$$
(1)

where

 P_{live} = pressure on the pipe due to the live load (psi)

 W_{live} = live load on the pipe (lb/in)

D = diameter of the pipe (in)

F = point load at the surface (lb)

H = depth of soil cover (in)

d = offset distance from the pipe to the line of application of the surface load

(in)

Using this equation, a tire, track, or any other load with a known contact area can be represented by a series of point loads at the surface, and the total load on the pipe is calculated as the summation of the effect of the individual loads.

As recommended by Moser⁹, the soil load above the pipeline is calculated as the weight of a prism of soil having a width equal to the diameter of the pipe and height equal to the depth of cover:

$$P_{soil} = \frac{W_{soil}}{D} = \rho \cdot H \tag{2}$$

where

 P_{soil} = pressure on the pipe due to the soil load (psi)

 W_{soil} = soil load on the pipe (lb/in)

 ρ = density of soil (lb/in³)

Kiefner and Associates, Inc.

⁹ Moser, A. P. (2001). *Buried pipe design* (2nd ed.). McGraw-Hill.

The vehicle live load and the soil load cause a deflection in the ring cross section of the pipe and circumferential bending in the pipe wall.

The CEPA equation combines the pressure stiffening and soil restraint terms into a single equation for determining circumferential (hoop) bending stresses due to live or soil loads:

$$\sigma_{H_{live}} = \frac{3 \cdot K_b \cdot P_{live} \cdot \left(\frac{D}{t}\right)^2}{1 + 3 \cdot K_z \cdot \frac{P}{E} \cdot \left(\frac{D}{t}\right)^3 + 0.0915 \cdot \frac{E'}{E} \cdot \left(\frac{D}{t}\right)^3}$$
(3)

where

$$\sigma_{\rm H_live}$$
 = circumferential (hoop) bending stress due to the live load (psi)

 K_b = soil parameter

t =wall thickness (in)

 K_z = soil parameter

P = internal pressure (psig)

E = Young's modulus of elasticity for steel (30x10⁶ psi)

E' = modulus of soil reaction (psi)

and

$$\sigma_{H_soil} = \frac{3 \cdot K_b \cdot P_{soil} \cdot \left(\frac{D}{t}\right)^2}{1 + 3 \cdot K_z \cdot \frac{P}{E} \cdot \left(\frac{D}{t}\right)^3 + 0.0915 \cdot \frac{E'}{E} \cdot \left(\frac{D}{t}\right)^3}$$
(4)

where

$$\sigma_{H soil}$$
 = circumferential (hoop) bending stress due to the soil load (psi)

The circumferential (hoop) stress due to internal pressure is given as:

$$\sigma_{H_{int\,ernal}} = \frac{P \cdot D}{2 \cdot t} \tag{5}$$

where

 $\sigma_{H \text{ internal}}$ = circumferential (hoop) stress due to internal pressure (psi)

The total circumferential stress, $\sigma_{H_{-}Total}$, is the sum of the stresses due to circumferential bending along with the hoop stress due to internal pressure. The total circumferential stress is compared to the allowable limit.

Internal pressure in pipelines restrained in soil causes a longitudinal stress equal to:

$$\sigma_{L \text{ int } ernal} = v \cdot \sigma_{H \text{ int } ernal} \tag{6}$$

where

 $\sigma_{L \text{ int ernal}}$ = longitudinal stress due to internal pressure (psi)

v = Poisson's ratio for steel (0.3)

In a manner similar to the longitudinal stress from pressure, the soil load causes a longitudinal stress equal to:

$$\sigma_{L_soil} = v \cdot \sigma_{H_soil} \tag{7}$$

where

 $\sigma_{L soil}$ = longitudinal stress due to soil load (psi)

The longitudinal stress due to the live load is determined as a combination of stress due to local bending and beam deflection. The calculation for the local longitudinal stress caused by the surface load is estimated using Bjilaard's solutions for local loading on a pipe found in Roark's Formulas for Stress and Strain¹⁰.

Kiefner and Associates, Inc.

¹⁰ Young, W. C. (1989). *Roark's formulas for stress & strain* (6th ed.). RR Donnelley & Sons Company.

(8)

 $\sigma_{L_{local}} = \frac{0.153}{1.56} \cdot \beta^4 \cdot \sigma_{H_{live}}$

where

$$\sigma_{L \ local}$$
 = local bending stress (psi)

and

$$\beta = [12 \cdot (1 - \nu^2)]^{1/8}$$
(9)

The vehicle load causes an axial pipeline deflection, which adds to the longitudinal stress due to internal pressure and temperature differential. If the pipeline is modeled as a beam on an elastic foundation, the maximum bending moment is given by Hetenyi¹¹ as:

$$M = \frac{P_{pipe} \cdot D}{4\lambda^2} \left(2e^{-\lambda x} \sin \lambda x \right)$$
(10)

where

M = bending moment (in-lb) P_{pipe} = Pressure on pipe from an equivalent point load (psi) λ = characteristic length (in⁻¹) x = distance along the pipeline (in)

and

$$\lambda = \sqrt[4]{\frac{E' \cdot D \cdot \theta}{4 \cdot E \cdot I}} \tag{11}$$

where

 θ = bedding angle of pipe (degrees)

I = pipe moment of inertia (in⁴)

 P_{pipe} is the uniformly distributed pressure on the pipe due to an equivalent point load at the surface that spreads at the soil distribution angle of 29.9 degrees from the surface point¹².

Kiefner and Associates, Inc.

¹¹ Hetényi, M. (1961). *Beams on elastic foundation* (6th ed.). University of Michigan.

¹² American Concrete Pipe Association. (2007). *Design data 1: Highway live loads on concrete pipe*.

The longitudinal bending stress is given as:

$$\sigma_{L_bend} = \frac{M \cdot D}{2I} \tag{12}$$

where

$$\sigma_{L_{bend}}$$
 = longitudinal bending stress (psi)

The total longitudinal stress due to temperature differential is given as:

$$\sigma_{L \ thermal} = E \cdot \alpha \cdot \Delta T \tag{13}$$

where

 $\sigma_{L thermal}$ = longitudinal thermal stress (psi)

 α = coefficient of thermal expansion for steel (6.67x10⁻⁶ in/in deg F)

 ΔT = temperature differential (installation – operation)

The total longitudinal stress, σ_{L_Total} , is the sum of the stresses from internal pressure, soil load, surface loads, axial deflection, and temperature differential. The total longitudinal stress is compared to the allowable limit.

The combined equivalent (Tresca – Equation 14; von Mises – Equation 15) stress is calculated as:

$$\sigma_{E} = \max\left(\left| \sigma_{H_{Total}} \right|, \left| \sigma_{L_{Total}} \right|, \left| \sigma_{H_{Total}} - \sigma_{L_{Total}} \right| \right)$$
(14)
$$\sigma_{E} = \sqrt{\sigma_{H_{Total}}^{2} - \sigma_{H_{Total}} \cdot \sigma_{L_{Total}} + \sigma_{L_{Total}}^{2} }$$
(15)

where

 $\sigma_{\scriptscriptstyle E}$ = combined equivalent stress (psi)

Kiefner and Associates, Inc.

7

The combined equivalent stress is then compared to the allowable limits. If the surface loading is expected to be frequent, then fatigue should be considered. Refer to "Table 3-Fatigue Endurance Limits, S_{FG} and S_{FL} , for Various Steel Grades" on page 18 in API Recommended Practice 1102 for standard guidelines on performing fatigue check calculations.

ANALYSIS – ENTERING CASE SPECIFIC DATA IN THE "GENERAL INPUT" TAB

Each data input field in the "General INPUT" tab is described below and categorized by section. These sections are designated by gray headings in the spreadsheet. There are two types of inputs: Keyed Entry and Option Button selection. The Keyed Entry input fields are designated by the light yellow cell color. All input fields and option buttons must be populated in order for the program to run.

Pipeline Information, Location, & Date Section

- **Pipeline Information** In Cell E4, enter pertinent information about the pipeline (name, identification number, etc.).
- **Pipeline Location** In Cell E5, enter the location of the pipeline. This can be a numerical value (such as station) or text.

Select Units Section

• **Units** – Use the option buttons to select the units (English or Metric) to perform the analysis.

Pipe Input Data Section

- **Outside Diameter** In Cell C12, enter the actual outside diameter of the pipeline.
- Wall Thickness In Cell C13, enter the nominal wall thickness of the pipeline.
- **Maximum Operating Pressure** In Cell C14, enter the stated MOP of the pipeline.
- **Specified Minimum Yield Strength** In Cell C15, enter the SMYS of the pipeline.
- Temperature Differential (T_{installed} T_{operating}) In Cell C16, enter the temperature difference between the pipe at the time of installation and the normal operating temperature. If this information is unknown, a default value of 20°F (11.1°C) should be utilized.

Soil Input Data Section

- **Soil Density** In Cell C21, the soil density in which the pipeline is buried is entered.
- **Depth of Cover** In Cell C22, enter the depth of cover of the pipeline (i.e., the depth from the surface to the top of the pipeline).
- **Bedding Angle** Use the option buttons to select the bedding angle of the pipeline. If this information is unknown, a default value of 30 degrees should be utilized.
- Modulus of Soil Reaction Use the option buttons to select either "User Defined:" or "Calculated from Lookup Tables:". If "User Defined:" is selected, in Cell C32, enter the Modulus of Soil Reaction. If "Calculated from Lookup Tables:" is selected, use the option buttons to select the "Soil Type:" and "Soil Compaction:". If this information is unknown,

a default value for "Soil Type:" of "Fine-grained with less than 25% sand content" and a default value for "Soil Compaction:" of 80% should be utilized.

 Soil Load Equation – Use the option buttons to select the desired soil load equation for the program to utilize in the analysis. If the "Trap Door Equation" is selected, in Cell C48, enter the Angle of Shearing Resistance (or Friction Angle). If unsure which soil load equation to utilize, select the "Prism Load Equation" as the default equation. Note: The trap door equation is used to account for the bridging of the soil over the pipeline. It should not be used unless the user understands the principles behind its use¹³. The results may not be conservative.

Miscellaneous Input Section

- **Impact Factor** Use the option buttons to select a "Vehicle Type:" and a "Pavement Type:".
 - Note 1: In this calculator, a "Highway Vehicle" is considered to be a vehicle with high-pressure tires (greater than or equal to 30 psi), while "Farm/Construction Equipment" vehicles are considered to be vehicles with low-pressure tires (less than 30 psi).
 - Note 2: For thick concrete slab crossings, such as highways, negligible energy is transmitted to the pipe. Typically, a pipe under highways is buried at a depth greater than 5 feet; however, if this is not the case or a conservative result is desired, then the "Flexible Pavement (i.e., Asphalt, Gravel, or Bare Soil)" option should be selected.
- Equivalent Stress Equation Use the option buttons to select the desired equivalent stress equation to utilize in the analysis. If unsure which equivalent stress equation to utilize, select the "Tresca Equation" which is slightly more conservative, as the default equation.
- Pipeline Regulatory Code Use the option buttons to select the desired pipeline regulatory code allowable limits in which to compare the analysis results. If the "User Defined Pipeline Stress Limits:" is selected, in Cell E72, E73, & E74, enter the allowable hoop stress, longitudinal stress, and equivalent stress as a percent of SMYS, respectively.

ANALYSIS – ENTERING CASE SPECIFIC DATA IN THE "WHEEL VEHICLE INPUT," "WHEEL VEHICLE 3-AXLE INPUT," "TRACK VEHICLE INPUT," OR "GRID INPUT" TAB

After the "General INPUT" tab has been populated, each of the data input fields in one of the desired vehicle input tabs, categorized by type, must be populated. There are four types of vehicles the program is able to analyze:

- o 2-axle, 4-wheel vehicle ("Wheel Vehicle INPUT" tab),
- 3-axle, 6-wheel vehicle ("Wheel Vehicle 3-Axle INPUT" tab),
- Track vehicle ("Track INPUT" tab),

Kiefner and Associates, Inc.

¹³ Bulson, P. S. (1985). *Buried structures: Static and dynamic strength*. Chapman & Hall.

• Custom vehicle ("Grid INPUT" tab).

Only one vehicle type is capable of being analyzed at a time, so it is only necessary to populate the inputs for the vehicle type in which the analysis is to be performed. The input fields on the other vehicle type tabs should be left blank. All input fields, designated by light yellow cell color, on the selected vehicle type tab must be populated in order for the program to run.

Wheel Vehicle INPUT

- Vehicle Information In Cell E4, enter pertinent information about the vehicle (brand, model, year, etc.).
- **Axle Load 1** In Cell G13, enter the gross weight of the vehicle's front axle.
- **Axle Load 2** In Cell G30, enter the gross weight of the vehicle's rear axle.
- Axle Width In Cell G33, enter the axle width of the vehicle. If this specification is not provided by the manufacturer, the width can be measured. For single-tire axles, measure the distance along the axle between the centerlines of each tire. For dual-tire axles, measure the distance along the axle from the space between the dual tires on one side of the axle to the space between the dual tires on the other side of the axle.
- Axle Separation In Cell G21, enter the axle separation of the vehicle. If this specification is not provided by the manufacturer, the separation can be measured as the perpendicular distance from the front axle to the rear axle.
- Contact Width 1 In Cell K10, enter the ground contact width of a front axle tire. If dual tires exist, treat them as one tire and enter the overall ground contact width of both tires, including the space between the tires.
- **Tire Pressure 1** In Cell L14, enter the tire pressure of the front axle tires.
- Contact Width 2 In Cell K24, enter the ground contact width of a rear axle tire. If dual tires exist, treat them as one tire and enter the overall ground contact width of both tires, including the space between the tires.
- **Tire Pressure 2** In Cell L28, enter the tire pressure of the rear axle tires.

Wheel Vehicle 3-Axle INPUT

- **Vehicle Information** In Cell E4, enter pertinent information about the vehicle (brand, model, year, etc.).
- **Axle Load 1** In Cell F13, enter the gross weight of the vehicle's front axle.
- **Axle Load 2** In Cell F27, enter the gross weight of the vehicle's middle axle.
- **Axle Load 3** In Cell F36, enter the gross weight of the vehicle's rear axle.
- Axle Width In Cell G42, enter the axle width of the vehicle. If this specification is not provided by the manufacturer, the width can be measured. For single-tire axles, measure the distance along the axle between the centerlines of each tire. For dual-tire axles, measure the distance along the axle from the space between the dual tires on one side of the axle to the space between the dual tires on the other side of the axle.

- Axle Separation 1 In Cell H21, enter the axle separation between the front and middle axles of the vehicle. If this specification is not provided by the manufacturer, the separation can be measured as the perpendicular distance from the front axle to the middle axle.
- Axle Separation 2 In Cell H33, enter the axle separation between the middle and rear axles of the vehicle. If this specification is not provided by the manufacturer, the separation can be measured as the perpendicular distance from the middle axle to the rear axle.
- Contact Width 1 In Cell K10, enter the ground contact width of a front axle tire. If dual tires exist, treat them as one tire and enter the overall ground contact width of both tires, including the space between the tires.
- **Tire Pressure 1** In Cell L14, enter the tire pressure of the front axle tires.
- Contact Width 2 In Cell K24, enter the ground contact width of a middle axle tire. If dual tires exist, treat them as one tire and enter the overall ground contact width of both tires, including the space between the tires.
- **Tire Pressure 2** In Cell L28, enter the tire pressure of the middle axle tires.
- Contact Width 3 In Cell K33, enter the ground contact width of a rear axle tire. If dual tires exist, treat them as one tire and enter the overall ground contact width of both tires, including the space between the tires.
- **Tire Pressure 3** In Cell L37, enter the tire pressure of the rear axle tires.

Track Vehicle INPUT

- **Vehicle Information** In Cell E4, enter pertinent information about the vehicle (brand, model, year, etc.).
- **Vehicle Load** In Cell G14, enter the gross weight of the vehicle.
- Track Length In Cell C21, enter the track length of the vehicle. If this specification is not provided by the manufacturer, the length can be measured as the distance along the track which is in direct contact with the ground. Note: Some manufacturers specify a ground pressure for their equipment. In this case an effective track length can be estimated based on the width and pressure.
- Track Separation In Cell G32 enter the track separation. If this specification is not provided by the manufacturer, the separation can be measured as the perpendicular distance from the centerline of the left track to the centerline of the right track.
- **Contact Width** In Cell J11, enter the ground contact width of a vehicle track.

Grid INPUT

The "Grid INPUT" tab is intended for advanced users who wish to analyze a specific portion of a vehicle (e.g., a specific axle on a vehicle) or a custom vehicle type with a footprint (or ground contact area) that cannot be analyzed using one of the specific vehicle type tabs. The input field descriptions for this tab are listed below. Appendix A provides further instructions for using the "Grid INPUT" tab.

- **Vehicle Information** In Cell E4, enter pertinent information about the vehicle (brand, model, year, etc.).
- **Vehicle Type** In Cell E5, enter pertinent information about the vehicle type (Wheel, Track, 2-axle, 3-axle, etc.).
- Measurement Point X-coordinate In Cell F11, enter the X-coordinate of the location where the program will calculate the pressure exerted on the surface of the pipe due to the vehicle load.
- Measurement Point Y-coordinate In Cell F12, enter the Y-coordinate of the location where the program will calculate the pressure exerted on the surface of the pipe due to the vehicle load.
- **Load (column of values)** In Column I, starting at Cell I12, enter the user defined array of point loads representing the custom vehicle foot print.
- X & Y (column of values) In Columns J and K, starting at Cell J12 and K12, enter the user defined array of X-Y-coordinates corresponding to the array of point loads listed in Column I, which represent the location of each point load in the custom vehicle foot print.

After all input fields on the "General INPUT" tab and the desired vehicle type tab have been populated, click the corresponding vehicle type "CALCULATE:" button to run the analysis. Each vehicle type tab includes a "CALCULATE:" button that runs the program analysis for that specific vehicle type. Appendix B gives a complete list of all the worksheet tabs and corresponding functions (or buttons) that reside on each tab.

NOTE: An error check is performed prior to the program initiating subroutines. If there is an issue with how an input has been entered, an error message will pop up, alerting the user as to which input cell is causing the issue.

ANALYSIS - "RESULTS" TAB

Once the program has finished running, it will automatically bring up the "Results" tab, which will display an overview of the user inputs and the results of the analysis calculated by the program.

Summary of Input Information

The top portion of the "Results" tab summarizes inputs from the general and vehicle type tabs, such as the pipeline/vehicle information, pipe geometry, soil characteristics, and vehicle specifications used in the analysis. The bottom portion of the "Results" tab includes the "Pipeline Regulatory Code" section, which lists the regulatory code selected by the user to which the calculated stresses will be compared.

Summary of Output Information

The top portion of the results tab includes the "Location of Maximum Load" output section, which describes where the maximum load occurs.

The bottom portion of the results tab gives the output of the CEPA Surface Loading Calculator program. A description of these results is given below, categorized by section.

Calculated Stress Data

- **Hoop Stress** components of hoop stress calculated by the program are listed below.
 - Hoop Stress due to:
 - Internal Pressure at MOP.
 - Live Load at Zero Pressure.
 - Live Load at MOP.
 - Total Hoop Stress at Zero Pressure.
 - Total Hoop Stress at MOP.
 - Hoop Stress as a percent of SMYS at Zero Pressure.
 - Hoop Stress as a percent of SMYS at MOP.
- **Longitudinal Stress** components of longitudinal stress calculated by the program are listed below.
 - Longitudinal Stress due to:
 - Live Load at Zero Pressure
 - Live Load at MOP.
 - Total Longitudinal Stress at Zero Pressure.
 - Total Longitudinal Stress at MOP.
 - Longitudinal Stress as a percent of SMYS at Zero Pressure.
 - Longitudinal Stress as a percent of SMYS at MOP.
 - **Equivalent Stress** equivalent stresses calculated by the program are listed below.
 - Equivalent Stress at Zero Pressure.
 - Equivalent Stress at MOP.
 - Equivalent Stress as a percent of SMYS at Zero Pressure.
 - Equivalent Stress as a percent of SMYS at MOP.

Pass/Fail

0

• This section lists whether each calculated stress passes or fails as compared to the allowable stress limits provided in the pipeline regulatory code selected by the user.

QUICK REFERENCE INFORMATION

"Variable Tables" tab

The sole purpose of the "Variable Tables" tab is to provide the user with a quick reference to common tables utilized when calculating surface loads. The tables included in this tab are not intended to be an all-encompassing list of variable values. The user should determine whether the use of these tables is appropriate for their specific situation.

"API RP 1102 Fatigue Table" tab

The table on this tab is reproduced courtesy of the American Petroleum Institute. Kiefner and Associates, Inc., is grateful to the American Petroleum Institute for granting permission as of 15

January 2013 for the reproduction of Table 3- Fatigue Endurance Limits, SFG and SFL, for Various Steel Grades from API RP 1102, 6th edition, April 1993 Reaffirmed July 2002: Steel Pipelines Crossing Railroads and Highways. The purpose of this tab is to provide the user with a quick reference to the aforementioned table when assessing scenarios where surface loading is expected to be frequent and fatigue must be considered.

APPENDIX A – ADVANCED USER INSTRUCTIONS FOR USING THE "GRID INPUT" TAB

The "Grid INPUT" tab (or Advanced User tab) was created to allow the user to define a grid of point loads matching the layout of their particular vehicle, instead of using one of the calculator's default vehicle layouts. This tab enables the user to make a vehicle point load grid as simple or as complex as desired. This tab also allows the user to analyze a single axle on a particular vehicle or can be used for surcharge loads.

The four components of the grid input tab are the: "Measurement Point X-Y-coordinates," "Load (point load)" value, and its associated "X-coordinate" and "Y-coordinate."

- 1. START by creating a grid of point loads within each contact area of the vehicle wheels/tracks that represent the layout of the overall vehicle.
 - a. NOTE: This could consist of a single point load located at the center of each wheel/track in the vehicle layout, or it could be more complex and consist of many point loads distributed equally throughout the contact area of each wheel/track of the vehicle layout to mimic surface pressure. See Figure A-1, which shows the relation between Measurement Point "A" and the point loads at the center of each grid within the entire grid area.
 - b. Each point load in a vehicle grid must be defined on the "Grid INPUT" tab by entering a value for "Load" (point load), "X" (which is the x-coordinate of the point load), and "Y" (which is the y-coordinate of the point load) in the respective input columns.
 - c. NOTE: The reference origin, where (x, y) = (0, 0), is relative and its placement is user defined. It is essential that the reference origin remains the same for all coordinates utilized in the Grid INPUT tab analysis.
- 2. NEXT, the user must enter the coordinates for the Measurement Point (i.e., the location where the user wishes the program to calculate the pressure exerted on the surface of the pipe due to the vehicle load).
- 3. THEN, after entering the point load grid and measurement point coordinates, click the "CALCULATE: Vehicle Grid Input" button to run the program.
 - a. NOTE: ALL columns, "Load," "X," and "Y," MUST contain a value for EACH point load. Otherwise, the program will return an error.
 - b. <u>IMPORTANT</u>: As noted on the "Grid INPUT" tab, a "Run-time error '13': Type mismatch" error will occur if one of the user inputs is non-numeric. If this error occurs, the user will need to find the non-numeric input and correct it to a numeric value in order to run the program.
- 4. LASTLY, the program will automatically bring up the "Results" tab when it is finished running.

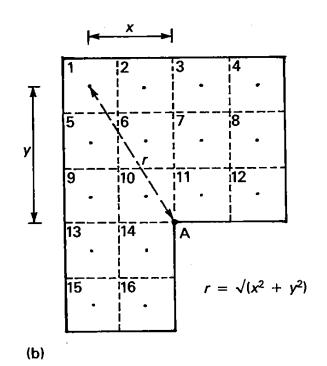


Figure A-1: Grid point load relation to Measurement Point "A"

APPENDIX B - LIST OF WORKSHEETS AND FUNCTIONS

- 1. General INPUT
- 2. Wheel Vehicle INPUTa. CALCULATE: Wheel Vehicle (2-Axles)
- Wheel Vehicle 3-Axle INPUT

 CALCULATE: Wheel Vehicle (3-Axles)
- 4. Track Vehicle INPUT a. CALCULATE: Track Vehicle
- 5. Grid INPUT a. CALCULATE: Vehicle Grid Input
- 6. Results
- 7. Variable Tables
- 8. API RP 1102 Fatigue Table

APPENDIX C – EXAMPLE ANALYSES

January 2014 FINAL 14-017

Example 1 and Example 2 both involve the scenario of crossing Pipeline A, described hereafter, except with two different types of construction equipment. Example 3 involves the scenario of crossing Pipeline B, described later, with a third type of construction equipment.

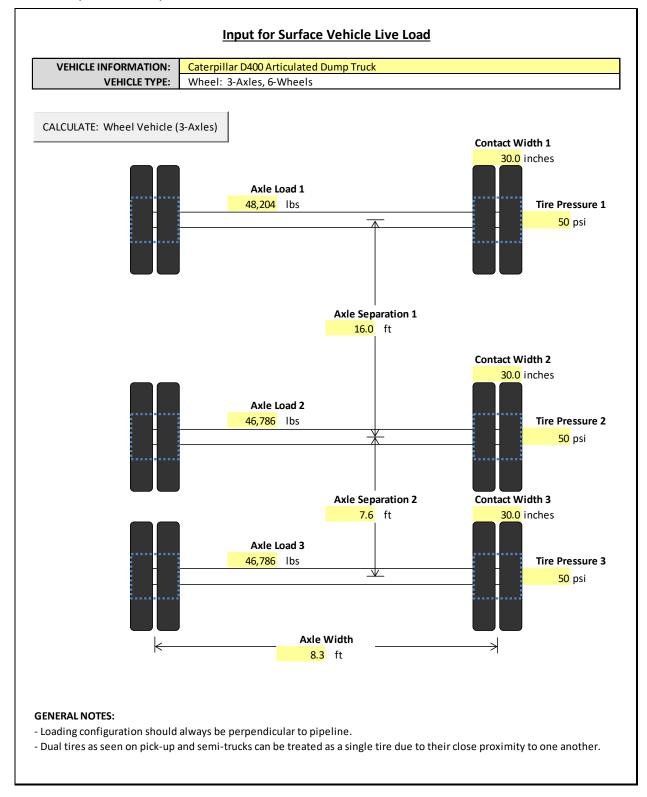
Pipeline A runs parallel to a major interstate highway, which is under construction. The operator of Pipeline A has been contacted by the project manager overseeing the highway construction to inquire whether a couple of different types of construction equipment will be able to safely cross the line. Pipeline A is a liquids line consisting of 16-inch outside diameter, 0.500-inch wall thickness, API Grade X42 pipe with a maximum operating pressure (MOP) of 1,074 psig. The line is buried 6.667-feet (80-inches) deep in a fine-grained soil with a density of 120-lb/ft³. The soil compaction is 90%. The temperature differential and bedding angle are unknown for this line.

Example 1 Scenario – Wheel Vehicle (3-Axle) crossing Pipeline A

Example 1 involves the scenario of Pipeline A being crossed by a Caterpillar D400 Articulated Dump Truck. This off-road piece of construction equipment has a total loaded vehicle weight of 141,776 lbs, which is distributed across its three axles as follows: Front Axle 48,204 lbs, Center Axle 46,786 lbs, and Rear Axle 46,786 lbs. Specifications from the manufacturer confirm the axle width is 8.3 feet, while the axle separation between the front and center axles is 16 feet, and between the center and rear axles is 7.6 feet. All tires on the dump truck are the same size. The tire contact width is 30 inches, and the tire pressure is 50 psi.

General Inputs – Example 1:

	<u>General Input f</u>	or Surface Loading Calculations	
PIPELINE INFORMATION:	Pipeline A		
PIPELINE LOCATION:	Parallel to Interstate Highw	ау	
DATE:	11/14/13 10:37 AM		
SELECT UNITS: • Engli	sh 🗘 Metric		
PIPE INP	UT DATA	Variable Description	Notes
D = <u>16</u> inches		< Outside Diameter	
t = 0.5 inches		< Wall Thickness	
P _{intemal} = 1074 psig		< Maximum Operating Pressure	
SMYS = 42,000 psi		< Specified Minimum Yield Strength	
ΔT = 20 °F		< Temperature Differential (T _{installed} - T _{operating})>	See NOTE #
	UT DATA	Variable Description	Notes
$\rho = \frac{120}{10}$ lb/ft ³		< Soil Density	
H = <u>6.667</u> ft		< Depth of Cover	
Bedding Angle (θ):		-	
	120 degrees	< Bedding Angle (degrees)	
30 degrees	C 150 degrees		
-	C 180 degrees		
© 90 degrees	5 100 degrees		
50 degrees		Soil (Pipe Bedding)	
Modulus of Soil Reaction (E')	:		
🔿 User Defined:		< Modulus of Soil Reaction (Defined by User)	
E' = <mark>N/A</mark> psi			
Calculated from Lookup Tab	les:	< Modulus of Soil Reaction (Calculated from tables)	
Soil Type:			
Fine-grained with less	s than 25% sand content		
Coarse-grained with t			
Coarse-grained with I			
Soil Compaction:			
© 80%			
 90% 95% 			
© 100%			
Select Soil Load Equation:			
Prism Load Equation			
C Trap Door Equation		< Angle of Shearing Resistance (Friction Angle)>	
φ = <mark>N/A</mark> degrees			See NOTE #2


MISCELLANEOUS INPUT	Variable Description	Note
Impact Factor (IF):		
Vehicle Type:	< Vehicle Type: Used to determine Impact Factor	
Mighway Vehicle (i.e. Semi-truck)	< Vehicles with high-pressure tires>	See NO
 Farm/Construction Equipment (i.e. Vehicle with large, off-road tires) 	< Vehicles with low-pressure tires	See NO
💭 Track Vehicle (i.e. Dozer or Excavator)	< Track Vehicles with steel or rubber tracks	
Pavement Type:	< Pavement Type: Used to determine Impact Factor	
Rigid Pavement (i.e. Concrete)		
Flexible Pavement (i.e. Asphalt, Gravel, or Bare Soil)		
Select Equivalent Stress Equation:	_	
Tresca Equation	< MORE conservative Equivalent stress equation	
Von Mises Equation	< LESS conservative Equivalent stress equation	
Select Pipeline Regulatory Code:	_	
B31.4	< ASME Code for Liquid Pressure Piping (2012)>	See NOT
O B31.8	< ASME Code for Gas Pressure Piping (2010)>	See NOT
CSA-Z662	< CSA Code for Oil and Gas Pipeline Systems (2011)>	See NOT
💭 User Defined Pipeline Stress Limits:	< Pipeline stress limits manually input by user>	See NOT
$\sigma_{Hoop_{96SMYS}} = N/A$		
σ _{Longitu} dinal_%SMYS = N/A		
$\sigma_{Equivalent %SMYS} = N/A$		

these codes will require the programming for this calculator to be modified in order to maintain proper functionality in accoordance with the latest versions of the ASME pipeline codes.

- **NOTE #6:** The Canadian Standards Association (CSA) recommends in CSA-Z662 that the pipeline owner/operator develop stress limits for their specific pipeline based on the design requirements set forth in the CSA-Z662 code. However, if these limits are unknown, the user may select the "CSA-Z662" pipeline regulatory code, which has the following default stress limits: $\sigma_{Hoop} = 0.9$ SMYS, $\sigma_{Longitudinal} = 0.9$ SMYS, and $\sigma_{Equivalent} = 0.9$ SMYS.
- NOTE #7: Stress Limits defined by user must be entered in terms of percent SMYS (i.e. a stress limit of 90% should be entered as 0.9).

Vehicle Inputs – Example 1:

Results – Example 1:

Results for Surface I	oading Calculation
------------------------------	--------------------

PIPELINE LOCATION:	Parallel	to Interstate Highway				
VEHICLE INFORMATION:	Caterpill	ar D400 Articulated Dump Truc	k			
VEHICLE TYPE:	Wheel:	3-Axles, 6-Wheels				
DATE:	11/14/20	013 10:54				
					LOCATI	ON OF MAXIMUM
GE	ENERAL INP	<u>UTS</u>	VEHICLE INPU	<u>TS</u>		LOAD
D = 16 inches	(Outside I	Diameter)	Axle or Track Separation 1:	16 ft	The max	imum pressure
t = 0.5 inches	(Wall Thic		Axle Separation 2 :	7.6 ft		on the surface of
P _{internal} = 1074 psig	(Maximur	n Operating Pressure)	Axle Width :	8.3 ft	the pipe	due to vehicle
SMYS = 42000 psi	(Specified	l Minimum Yield Strength)	Track Length :	N/A ft	point loa	d occurs:
ΔT = 20 °F	(Tempera	ture Differential)	Axle 1 or Track Vehicle Load :	48204 lbs		
$\rho = 120 \text{ lb/ft}^3$	(Density)		Contact Width 1:	30 inches	Under t	he middle tires.
H = 6.667 ft	(Depth of	Cover)	Tire Pressure 1:	50 psi		
θ = 30 degrees	(Bedding	Angle)	Axle Load 2 :	46786 lbs		
E' = N/A psi	(Modulus	of Soil Reaction)	Contact Width 2 :	30 inches		
IF = 1.20	(Impact Fa	actor)	Tire Pressure 2 :	50 psi		
Soil Load Equation: Prism Lo	oad Equatio	in	Axle Load 3 :	46786 lbs		
φ = N/A	A degrees		Contact Width 3 :	30 inches		
Equivalent Stress Equation:	0	uation	Tire Pressure 3 :	50 psi		
			Measurement Point X-coord :	N/A inches		
			Measurement Point Y-coord :	N/A inches		
				1		
CALCULATED STRESS D	ATA	Variable I	Description	Pipeline Regulato	ory Code	Pass / Fail
	<u>ATA</u>	<u>Variable I</u>	Description	Pipeline Regulato	ory Code	Pass / Fail
Hoop Stress (σ _H):		<u>Variable I</u>		Pipeline Regulato	ory Code	<u>Pass / Fail</u>
Hoop Stress ($\sigma_{\rm H}$): $\sigma_{\rm H_Internal_MOP} = 17184$))	Pipeline Regulato	ory Code	<u>Pass / Fail</u>
Hoop Stress ($\sigma_{\rm H}$): $\sigma_{\rm H_Internal_MOP} = 1718^{4}$ $\sigma_{\rm H_Live_Zero} = 1708^{4}$	4 psi 8 psi	< Internal Pressure @ MOF))	Pipeline Regulato	ory Code	<u>Pass / Fail</u>
Hoop Stress (σ_{H}): $\sigma_{H_Internal_MOP} = 17184$ $\sigma_{H_Live_Zero} = 1700$ $\sigma_{H_Live_MOP} = 1260$	4 psi	< Internal Pressure @ MOF < Live Load @ Zero pressur	e	Pipeline Regulato	ory Code	<u>Pass / Fail</u>
Hoop Stress (σ_{H}): $\sigma_{H_Internal_MOP} = 17184$ $\sigma_{H_Live_Zero} = 1708$ $\sigma_{H_Live_MOP} = 1268$ $\sigma_{H_Total_Zero} = 5367$	4 psi 3 psi 3 psi 7 psi	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero	o re o pressure	Pipeline Regulato	ory Code	<u>Pass / Fail</u>
Hoop Stress (σ_{H}): $\sigma_{H_Internal_MOP} = 17184$ $\sigma_{H_Live_Zero} = 1700$ $\sigma_{H_Live_MOP} = 1260$ $\sigma_{H_Total_Zero} = 5360$ $\sigma_{H_Total_MOP} = 21160$	4 psi 3 psi 3 psi 7 psi 9 psi	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOI	p pressure	Pipeline Regulato		Pass / Fail PASS
Hoop Stress (σ_{H}): $\sigma_{H_{\perp}internal_MOP} = 17184$ $\sigma_{H_{\perp}live_Zero} = 1700$ $\sigma_{H_{\perp}live_MOP} = 1260$ $\sigma_{H_{\perp}total_Zero} = 5360$ $\sigma_{H_{\perp}total_MOP} = 21160$ $\sigma_{H_{\perp}SSMYS_Zero} = 12.8\%$	4 psi 8 psi 3 psi 7 psi 9 psi 6	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOI Hoop Stress %SMYS @ Zero	p pressure		2012	
Hoop Stress (σ_{H}): $\sigma_{H_{\perp} internal_MOP} = 17184$ $\sigma_{H_{\perp} ive_Zero} = 1706$ $\sigma_{H_{\perp} ve_MOP} = 1266$ $\sigma_{H_{\perp} total_Zero} = 5367$ $\sigma_{H_{\perp} total_MOP} = 21169$ $\sigma_{H_{\perp} xSMYS_Zero} = 12.8\%$	4 psi 8 psi 3 psi 7 psi 9 psi 6	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOI	p pressure	ASME B31.4-2	2012	PASS
Hoop Stress (σ_{H}): $\sigma_{H_internal_MOP} = 17184$ $\sigma_{H_ive_MOP} = 1708$ $\sigma_{H_ive_MOP} = 1268$ $\sigma_{H_rotal_Zero} = 5366$ $\sigma_{H_rotal_MOP} = 21166$ $\sigma_{H_sSMYS_Zero} = 12.8\%$ $\sigma_{H_sSMYS_Zero} = 50.4\%$ Longitudinal Stress (σ_{t}):	4 psi 3 psi 3 psi 7 psi 9 psi 6	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP < Total Hoop Stress @ Zerc < Total Hoop Stress @ MOI < Hoop Stress %SMYS @ Zet < Hoop Stress %SMYS @ M	o pressure o pressure o pressure OP	ASME B31.4-2	2012	PASS
Hoop Stress (σ_{H}): $\sigma_{H_internal_MOP} = 17184$ $\sigma_{H_ive_MOP} = 1708$ $\sigma_{H_ive_MOP} = 1268$ $\sigma_{H_rotal_Zero} = 5366$ $\sigma_{H_rotal_MOP} = 21166$ $\sigma_{H_sSMYS_Zero} = 12.8\%$ $\sigma_{H_sSMYS_Zero} = 50.4\%$ Longitudinal Stress (σ_{t}):	4 psi 8 psi 3 psi 7 psi 9 psi 6	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOI Hoop Stress %SMYS @ Zero	o pressure o pressure o pressure OP	ASME B31.4-2	2012	PASS
Hoop Stress (σ_{H}): $\sigma_{H_internal_MOP} = 17184$ $\sigma_{H_Live_Zero} = 1700$ $\sigma_{H_total_Zero} = 5365$ $\sigma_{H_total_MOP} = 21166$ $\sigma_{H_sSMYS_Zero} = 12.8\%$ $\sigma_{H_sSMYS_Zero} = 12.8\%$ $\sigma_{H_sSMYS_Zero} = 50.4\%$ Longitudinal Stress (σ_{L}): $\sigma_{L_Live_Zero} = 1658$	4 psi 3 psi 3 psi 7 psi 9 psi 6	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP < Total Hoop Stress @ Zerc < Total Hoop Stress @ MOI < Hoop Stress %SMYS @ Zet < Hoop Stress %SMYS @ M	o pressure o pressure o pressure OP	ASME B31.4-2	2012	PASS
$Hoop Stress (\sigma_{H}):$ $\sigma_{H_{\perp}Internal_MOP} = 17184$ $\sigma_{H_{\perp}Live_Zero} = 1700$ $\sigma_{H_{\perp}Ive_MOP} = 1263$ $\sigma_{H_{\perp}Total_Zero} = 5365$ $\sigma_{H_{\perp}Total_MOP} = 21165$ $\sigma_{H_{\perp}SSMYS_Zero} = 12.8\%$ $\sigma_{H_{\perp}SSMYS_MOP} = 50.4\%$ Longitudinal Stress (σ_{I}): $\sigma_{L_{\perp}Uve_Zero} = 1658$ $\sigma_{L_{\perp}Uve_Zero} = 1658$	4 psi 3 psi 3 psi 7 psi 9 psi 6 5 8 psi	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Hoop Stress %SMYS @ Xe < Hoop Stress %SMYS @ MOP < Live Load @ Zero pressur	p pressure p pressure p pressure p pressure op	ASME B31.4-2	2012	PASS
	4 psi 3 psi 3 psi 9 psi 9 psi 6 6 8 psi 5 psi 5 psi	Live Load @ Zero pressure Live Load @ Zero pressure Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOI Hoop Stress %SMYS @ M Hoop Stress %SMYS @ M Live Load @ Zero pressure Live Load @ MOP	e p pressure pro pressure OP @ Zero pressure	ASME B31.4-2	2012	PASS
Hoop Stress (σ_{H}): $\sigma_{H_internal_MOP} = 17184$ $\sigma_{H_Live_Zero} = 1700$ $\sigma_{H_Total_MOP} = 1268$ $\sigma_{H_Total_MOP} = 221166$ $\sigma_{H_Total_MOP} = 1218$ $\sigma_{H_SSMYS_Zero} = 12.8\%$ $\sigma_{H_%SMYS_MOP} = 50.4\%$ Longitudinal Stress (σ_{L}): $\sigma_{L_Live_Zero} = 1658$ $\sigma_{L_tive_MOP} = 1516$ $\sigma_{L_total_Zero} = 6655$	4 psi 3 psi 3 psi 7 psi 6 psi 6 5 psi 6 psi 6 psi 6 psi	Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero < Total Hoop Stress @ MOI < Hoop Stress %SMYS @ Ze < Hoop Stress %SMYS @ M < Live Load @ Zero pressur < Live Load @ MOP < Total Longitudinal Stress	e p pressure pro pressure OP e @ Zero pressure @ MOP	ASME B31.4-2	2012 2012	PASS
$Hoop Stress (\sigma_{H}): \sigma_{H_{_{_{_{_{_{_{_{}}}Internal_MOP}}}}} = 17184 \sigma_{H_{_{_{_{_{_{_{_{}}UveMOP}}}}} = 1708 \sigma_{H_{_{_{_{_{_{_{_{}}UveMOP}}}}} = 1268 \sigma_{H_{_{_{_{_{_{_{}}Total_MOP}}}} = 21166 \sigma_{H_{_{_{_{_{_{}}Total_MOP}}}} = 12166 \sigma_{H_{_{_{_{_{}}SSMYS_Zero}}} = 12.8\% \sigma_{H_{_{_{_{_{}}SSMYS_MOP}}} = 50.4\%$ Longitudinal Stress (σ_{i}): $\sigma_{L_{_{_{_{_{_{_{_{_{_{}}}SSMYS_MOP}}}}} = 50.4\%$	4 psi 3 psi 3 psi 7 psi 9 psi 6 6 6 7 9 psi 5 psi 5 psi 6 9 psi 6 9 psi 6 9 psi 6 9 psi 9	Internal Pressure @ MOF Live Load @ Zero pressure Total Hoop Stress @ Zero Hoop Stress %SMYS @ MOF Hoop Stress %SMYS @ M < Live Load @ Zero pressure < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress	e p pressure pro pressure OP e @ Zero pressure @ MOP YS @ Zero pressure	ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS
$Hoop Stress (\sigma_{H}):$ $\sigma_{H_{\perp}Internal_{\perp}MOP} = 17184$ $\sigma_{H_{\perp}Live_{\perp}cor} = 1700$ $\sigma_{H_{\perp}Ive_{\perp}MOP} = 1260$ $\sigma_{H_{\perp}Total_{\perp}MOP} = 21160$ $\sigma_{H_{\perp}Total_{\perp}MOP} = 21160$ $\sigma_{H_{\perp}SSMYS_{\perp}Cor} = 50.4\%$ Longitudinal Stress (σ_{L}): $\sigma_{L_{\perp}Uve_{\perp}MOP} = 1510$ $\sigma_{L_{\perp}Uve_{\perp}MOP} = 1510$ $\sigma_{L_{\perp}Uve_{\perp}MOP} = 1510$ $\sigma_{L_{\perp}Total_{\perp}Cor} = 6650$ $\sigma_{L_{\perp}Total_{\perp}MOP} = 11380$ $\sigma_{L_{\parallel}SSMYS_{\perp}Cor} = 18.8\%$	4 psi 3 psi 3 psi 7 psi 9 psi 6 6 6 7 9 psi 5 psi 5 psi 6 9 psi 6 9 psi 6 9 psi 6 9 psi 9	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Hoop Stress %SMYS @ MOI Hoop Stress %SMYS @ M Live Load @ Zero pressur Live Load @ MOP Total Longitudinal Stress Total Longitudinal Stress %SM	e p pressure pro pressure OP e @ Zero pressure @ MOP YS @ Zero pressure	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
Hoop Stress (σ_{H}): $\sigma_{H_{\perp} Internal_MOP} = 1718.4$ $\sigma_{H_{\perp} Ive_Zero} = 1708$ $\sigma_{H_{\perp} Ive_Zero} = 1268$ $\sigma_{H_{\perp} Total_Zero} = 5365$ $\sigma_{H_{\perp} Total_Zero} = 5367$ $\sigma_{H_{\perp} Total_Zero} = 12.8\%$ $\sigma_{H_{\perp} SSMYS_Zero} = 12.8\%$ $\sigma_{H_{\perp} SSMYS_Zero} = 12.8\%$ $\sigma_{H_{\perp} SSMYS_Zero} = 12.8\%$ $\sigma_{L_{\perp} Uve_Zero} = 12.8\%$ $\sigma_{L_{\perp} Uve_Zero} = 1658$ $\sigma_{L_{\perp} Uve_Zero} = 1516$ $\sigma_{L_{\perp} Uve_Zero} = 1516$ $\sigma_{L_{\perp} Total_Zero} = 66556$ $\sigma_{L_{\perp} Total_Zero} = 1518\%$ $\sigma_{L_{\perp} SSMYS_Zero} = 15.8\%$ $\sigma_{L_{\perp} SSMYS_Zero} = 15.8\%$	4 psi 3 psi 3 psi 7 psi 9 psi 6 5 psi 5 psi 6 psi 6	< Internal Pressure @ MOF < Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero < Total Hoop Stress @ MOI < Hoop Stress %SMYS @ Zero < Live Load @ Zero pressur < Live Load @ MOP < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress %SM < Longitudinal Stress %SM	o pressure o pressure o pressure OP e @ Zero pressure @ MOP YS @ Zero pressure YS @ MOP	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
Hoop Stress (σ_{H}): $\sigma_{H_{\perp}internal_MOP} = 17184$ $\sigma_{H_{\perp}ive_{zero}} = 1706$ $\sigma_{H_{\perp}ive_{zero}} = 1266$ $\sigma_{H_{\perp}total_{zero}} = 5367$ $\sigma_{H_{\perp}total_{zero}} = 5367$ $\sigma_{H_{\perp}total_{zero}} = 12.8\%$ $\sigma_{H_{\perp}%SMYS_Zero} = 12.8\%$ $\sigma_{H_{\perp}%SMYS_Zero} = 12.8\%$ $\sigma_{H_{\perp}%SMYS_Zero} = 12.8\%$ $\sigma_{L_{\perp}ive_{\perp}MOP} = 50.4\%$ Longitudinal Stress (σ_{i}): $\sigma_{L_{\perp}ive_{\perp}MOP} = 11386$ $\sigma_{L_{\perp}total_{\perp}MOP} = 11386$ $\sigma_{L_{\perp}total_{\perp}MOP} = 11386$ $\sigma_{L_{\perp}%SMYS_Zero} = 15.8\%$ $\sigma_{L_{\parallel}%SMYS_{\perp}MOP} = 27.1\%$	4 psi 3 psi 3 psi 7 psi 9 psi 6 5 psi 5 psi 6 psi 6	< Internal Pressure @ MOF < Live Load @ Zero pressur < Total Hoop Stress @ Zero < Total Hoop Stress @ MOI < Total Hoop Stress %SMYS @ Xe < Live Load @ Zero pressur < Live Load @ MOP < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress %SM < Longitudinal Stress %SM < Equivalent Stress @ Zero	p pressure p pressure p pressure OP re @ Zero pressure @ MOP YS @ Zero pressure YS @ MOP	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
Hoop Stress (σ_{H}): $\sigma_{H_{\perp}internal_MOP} = 17184$ $\sigma_{H_{\perp}ive_zero} = 1706$ $\sigma_{H_{\perp}ive_zero} = 1266$ $\sigma_{H_{\perp}total_zero} = 5366$ $\sigma_{H_{\perp}total_zero} = 5367$ $\sigma_{H_{\perp}total_zero} = 12.8\%$ $\sigma_{H_{2}SSMYS_Zero} = 12.8\%$ $\sigma_{H_{2}SSMYS_Zero} = 12.8\%$ $\sigma_{H_{2}SSMYS_Zero} = 12.8\%$ $\sigma_{L_{2}Ve_zero} = 1516$ $\sigma_{L_{2}Ve_zero} = 1516$ $\sigma_{L_{2}Ve_ze$	4 psi 3 psi 3 psi 5 psi 6 6 5 psi 6 5 psi 6 6 3 psi 6 3 psi	< Internal Pressure @ MOF < Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero < Total Hoop Stress @ MOI < Hoop Stress %SMYS @ Zero < Live Load @ Zero pressur < Live Load @ MOP < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress %SM < Longitudinal Stress %SM	p pressure p pressure p pressure OP re @ Zero pressure @ MOP YS @ Zero pressure YS @ MOP	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
$Hoop Stress (\sigma_{H}):$ $\sigma_{H_{\perp}internal_MOP} = 17184$ $\sigma_{H_{\perp}ive_Zero} = 1708$ $\sigma_{H_{\perp}ive_MOP} = 1266$ $\sigma_{H_{\perp}Total_XOP} = 21166$ $\sigma_{H_{\perp}Total_XOP} = 112.8\%$ $\sigma_{H_{\perp}SSMYS_Zero} = 12.8\%$ $\sigma_{H_{\perp}SSMYS_Zero} = 15.8\%$ $\sigma_{L_{\perp}Total_MOP} = 11386$ $\sigma_{L_{\perp}Total_MOP} = 11386$ $\sigma_{L_{\perp}SSMYS_Zero} = 15.8\%$	4 psi 3 psi 3 psi 9 psi 6 5 psi 5 psi 5 psi 6 6 6 3 psi 9 ps	< Internal Pressure @ MOF < Live Load @ Zero pressur < Total Hoop Stress @ Zero < Total Hoop Stress @ MOI < Total Hoop Stress %SMYS @ Xe < Live Load @ Zero pressur < Live Load @ MOP < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress %SM < Longitudinal Stress %SM < Equivalent Stress @ Zero	p pressure p pressure pro pressure OP re @ Zero pressure @ MOP YS @ Zero pressure YS @ Zero pressure YS @ MOP	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	2012 2012 2012 2012 2012	PASS PASS PASS

GENERAL NOTES:

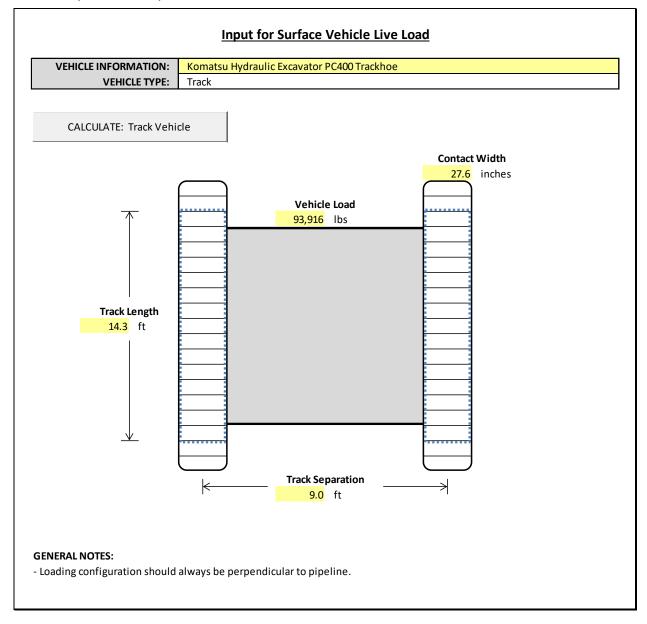
- Please refer to "Table 3-Fatigue Endurance Limits, S_{FG} and S_{FU} for Various Steel Grades" on page 18 in API Recommended Practice 1102 when performing fatigue check calculations.

Example 2 Scenario – Track Vehicle crossing Pipeline A

Example 2 involves the scenario of Pipeline A being crossed by a Komatsu Hydraulic Excavator PC400 Trackhoe. This off-road piece of construction equipment has a total vehicle operating weight of 93,916 lbs, which is equally distributed across its two tracks. Specifications from the manufacturer confirm the track separation is 9 feet, while the track ground contact length is 14.3 feet. The width of each vehicle track is 27.6 inches.

General Inputs – Example 2:

PIPELINE INFORMATION:	Pipeline A		
PIPELINE LOCATION:	Parallel to Interstate High	way	
DATE:	11/14/13 11:03 AM		
SELECT UNITS: G Englis	sh 🔿 Metric		
PIPE INP	UT DATA	Variable Description	<u>Notes</u>
D = <u>16</u> inches		< Outside Diameter	
t = 0.5 inches		< Wall Thickness	
P _{intemal} = 1074 psig		< Maximum Operating Pressure	
SMYS = 42,000 psi		< Specified Minimum Yield Strength	
ΔT = 20 °F		< Temperature Differential (T _{installed} - T _{operating})>	See NOTE #
SOILINP	UT DATA	Variable Description	Notes
		<pre>< Soil Density</pre>	
ρ = <u>120</u> lb/ft ³ H = <u>6.667</u> ft		< Soll Density < Depth of Cover	
H - 0.007 IT			
Bedding Angle (θ):			
	120 degrees	< Bedding Angle (degrees)	
30 degrees	C 150 degrees	be during i wight (degrees)	
-	C 180 degrees		
© 90 degrees			
50 degrees		Soil (Pipe Bedding)	
Modulus of Soil Reaction (E'):			
O User Defined:		< Modulus of Soil Reaction (Defined by User)	
E' = N/A psi			
Calculated from Lookup Table	es:	< Modulus of Soil Reaction (Calculated from tables)	
Soil Type:			
Fine-grained with less	s than 25% sand content		
Coarse-grained with f	ines		
Coarse-grained with I	ittle or no fines		
Soil Compaction:			
© 80%			
• 90%			
© 95%			
C 100%			
Select Soil Load Equation:		_	
Prism Load Equation			
© Trap Door Equation			


MISCELLANEOUS INPUT	Variable Description	Note
Impact Factor (IF):		
Vehicle Type:	< Vehicle Type: Used to determine Impact Factor	
Mighway Vehicle (i.e. Semi-truck)	< Vehicles with high-pressure tires>	See NO
Farm/Construction Equipment (i.e. Vehicle with large, off-road tires)	< Vehicles with low-pressure tires>	See NO
Track Vehicle (i.e. Dozer or Excavator)	< Track Vehicles with steel or rubber tracks	
Pavement Type:	< Pavement Type: Used to determine Impact Factor	
Rigid Pavement (i.e. Concrete)		
Flexible Pavement (i.e. Asphalt, Gravel, or Bare Soil)		
Select Equivalent Stress Equation:	-	
Tresca Equation	< MORE conservative Equivalent stress equation	
💭 Von Mises Equation	< LESS conservative Equivalent stress equation	
Select Pipeline Regulatory Code:	-	
B31.4	< ASME Code for Liquid Pressure Piping (2012)>	See NOT
O B31.8	< ASME Code for Gas Pressure Piping (2010)>	See NOT
CSA-Z662	< CSA Code for Oil and Gas Pipeline Systems (2011)>	See NOT
🔿 User Defined Pipeline Stress Limits:	< Pipeline stress limits manually input by user>	See NOT
$\sigma_{Hoop_{MS}MYS} = N/A$		
$\sigma_{\text{Longitudinal_%SMYS}} = N/A$		
$\sigma_{Equivalent %SMYS} = N/A$		

these codes will require the programming for this calculator to be modified in order to maintain proper functionality in accoordance with the latest versions of the ASME pipeline codes.

- **NOTE #6:** The Canadian Standards Association (CSA) recommends in CSA-Z662 that the pipeline owner/operator develop stress limits for their specific pipeline based on the design requirements set forth in the CSA-Z662 code. However, if these limits are unknown, the user may select the "CSA-Z662" pipeline regulatory code, which has the following default stress limits: $\sigma_{Hoop} = 0.9$ SMYS, $\sigma_{Longitudinal} = 0.9$ SMYS, and $\sigma_{Equivalent} = 0.9$ SMYS.
- NOTE #7: Stress Limits defined by user must be entered in terms of percent SMYS (i.e. a stress limit of 90% should be entered as 0.9).

Vehicle Inputs – Example 2:

Results – Example 2:

PIPELINE INFORMATIC	N: Pipelin	e A				
PIPELINE LOCATIO	N: Parallel	to Interstate Highway				
VEHICLE INFORMATIC	N: Komats	u Hydraulic Excavator PC400 Tra	ackhoe			
VEHICLE TY	PE: Track					
DA	TE: 11/14/2	013 11:09				
	GENERAL INF	PUTS	VEHICLE INPU	<u>TS</u>	LOCATI	ON OF MAXIMUM LOAD
D = 16 inche	s (Outside	Diameter)	Axle or Track Separation 1 :	9 ft	The max	imum pressure
t = 0.5 inche	s (Wall Thi	ckness)	Axle Separation 2 :	N/A ft	exerted	on the surface of
P _{internal} = 1074 psig	(Maximu	m Operating Pressure)	Axle Width :	N/A ft	the pipe	due to vehicle
SMYS = 42000 psi	(Specifie	d Minimum Yield Strength)	Track Length :	14.3 ft	point loa	ad occurs:
ΔT = 20 °F	(Tempera	ature Differential)	Axle 1 or Track Vehicle Load :	93916 lbs		
$\rho = 120 \text{ lb/ft}^3$	(Density)	1	Contact Width 1:	27.6 inches	Under t	he tracks of the
H = 6.667 ft	(Depth o	f Cover)	Tire Pressure 1:	N/A psi	vehicle.	
θ = 30 degre	es (Bedding	Angle)	Axle Load 2 :	N/A lbs		
E' = N/A psi	(Modulu	s of Soil Reaction)	Contact Width 2 :	N/A inches		
IF = 1.45	(Impact F	actor)	Tire Pressure 2 :	N/A psi		
Soil Load Equation: Pris	m Load Equati	on	Axle Load 3 :	N/A lbs		
φ =	N/A degrees		Contact Width 3 :	N/A inches		
Equivalent Stress Equation	on: Tresca Eq	luation	Tire Pressure 3 :	N/A psi		
			Measurement Point X-coord :	N/A inches		
CALCULATED STRES	<u>S DATA</u>		Measurement Point X-coord :	N/A inches	ory Code	<u>Pass / Fail</u>
<u>CALCULATED STRES</u> Hoop Stress (σ _H):		Variable	Measurement Point X-coord : Measurement Point Y-coord : Description	N/A inches N/A inches	ory Code	<u>Pass / Fail</u>
<u>CALCULATED STRES</u> Hoop Stress (σ _H): σ _{H_intemal_MOP} = 1 [°]	7184 psi	Variable	Measurement Point X-coord : Measurement Point Y-coord : Description	N/A inches N/A inches	ory Code	Pass / Fail
$\frac{CALCULATED STRES}{Hoop Stress (\sigma_{H}):}$ $\sigma_{H_{internal_MOP}} = 1$ $\sigma_{H_{Live_Zero}} = 1$	7184 psi 2032 psi	<u>Variable</u> < Internal Pressure @ MO < Live Load @ Zero pressu	Measurement Point X-coord : Measurement Point Y-coord : Description	N/A inches N/A inches	ory Code	<u>Pass / Fail</u>
$\frac{CALCULATED STRES}{G_{H}}$ Hoop Stress (σ_{H}): $\sigma_{H_{internal_MOP}} = 1$: $\sigma_{H_{Live_Zero}} = \sigma_{H_{Live_MOP}} = 1$	7184 psi 2032 psi 1509 psi	Variable < Internal Pressure @ MO < Live Load @ Zero pressu < Live Load @ MOP	Measurement Point X-coord : Measurement Point Y-coord : Description	N/A inches N/A inches	ory Code	<u>Pass / Fail</u>
$\frac{CALCULATED STRES}{G_{H}:}$ $\sigma_{H_{internal_MOP}} = 1:$ $\sigma_{H_{Live_Zero}} =$ $\sigma_{H_{ive_MOP}} =$ $\sigma_{H_{iotal_Zero}} =$	7184 psi 2032 psi 1509 psi 5691 psi	Variable < Internal Pressure @ MO < Live Load @ Zero pressu < Live Load @ MOP < Total Hoop Stress @ Zer	Measurement Point X-coord : Measurement Point Y-coord : Description up ure o pressure	N/A inches N/A inches	ory Code	<u>Pass / Fail</u>
$\frac{CALCULATED STRES}{G_{H}}$ Hoop Stress (σ_{H}): $\sigma_{H_{internal_MOP}} = 12$ $\sigma_{H_{ive_MOP}} = 2$ $\sigma_{H_{iotal_Zero}} = 2$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi	Variable < Internal Pressure @ MO < Live Load @ Zero pressu < Live Load @ MOP < Total Hoop Stress @ Zer < Total Hoop Stress @ MC	Measurement Point X-coord : Measurement Point Y-coord : Description ure opressure op	N/A inches N/A inches Pipeline Regulato		
$\frac{\text{CALCULATED STRES}}{\sigma_{\text{H_internal_MOP}}} = 11$ $\sigma_{\text{H_ive_Zero}} = 3$ $\sigma_{\text{H_ive_MOP}} = 3$ $\sigma_{\text{H_rotal_Zero}} = 3$ $\sigma_{\text{H_rotal_MOP}} = 22$ $\sigma_{\text{H_motal_MOP}} = 22$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 8.6%	Variable	Measurement Point X-coord : Measurement Point Y-coord : Description p p p p p ero pressure p ero pressure	N/A inches N/A inches Pipeline Regulato ASME B31.4-2	2012	PASS
$\frac{\text{CALCULATED STRES}}{\sigma_{\text{H_internal_MOP}} = 1}$ $\sigma_{\text{H_ive_Zero}} = \sigma_{\text{H_ive_MOP}} = 1$ $\sigma_{\text{H_ive_MOP}} = 2$ $\sigma_{\text{H_Total_MOP}} = 2$ $\sigma_{\text{H_Total_MOP}} = 2$ $\sigma_{\text{H_SSMYS_Zero}} = 12$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi	Variable < Internal Pressure @ MO < Live Load @ Zero pressu < Live Load @ MOP < Total Hoop Stress @ Zer < Total Hoop Stress @ MC	Measurement Point X-coord : Measurement Point Y-coord : Description p p p p p ero pressure p ero pressure	N/A inches N/A inches Pipeline Regulato	2012	
$\frac{\text{CALCULATED STRES}}{\sigma_{\text{H_internal_MOP}}} = 11$ $\sigma_{\text{H_ive_Zero}} = 3$ $\sigma_{\text{H_ive_MOP}} = 3$ $\sigma_{\text{H_rotal_Zero}} = 3$ $\sigma_{\text{H_rotal_MOP}} = 22$ $\sigma_{\text{H_motal_MOP}} = 22$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 8.6%	Variable	Measurement Point X-coord : Measurement Point Y-coord : Description p p p p p ero pressure p ero pressure	N/A inches N/A inches Pipeline Regulato ASME B31.4-2	2012	PASS
$\label{eq:constraints} \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \\ \hline \end{array} \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \\ \hline \\ \hline \end{array} \\ \\ \hline \\ \\ \\ \\ \end{array} \\ \end{array} \\ \\ \\ \\	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 8.6%	Variable	Measurement Point X-coord : Measurement Point Y-coord : Description ure to pressure pp tero pressure MOP	N/A inches N/A inches Pipeline Regulato ASME B31.4-2	2012	PASS
$\frac{\text{CALCULATED STRES}}{\text{Hoop Stress } (\sigma_{H}):}$ $\sigma_{H_Internal_MOP} = 1:$ $\sigma_{H_Live_Zero} = 2:$ $\sigma_{H_Total_Zero} = 2:$ $\sigma_{H_Total_MOP} = 2:$ $\sigma_{H_SSMYS_Zero} = 1:$ $\sigma_{H_SSMYS_Zero} = 5:$ Longitudinal Stress (σ_{I}): $\sigma_{L_Live_Zero} = 2:$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 3.6%	Variable <	Measurement Point X-coord : Measurement Point Y-coord : Description ure to pressure pp tero pressure MOP	N/A inches N/A inches Pipeline Regulato ASME B31.4-2	2012	PASS
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 3.6% 1.0%	Variable <	Measurement Point X-coord : Measurement Point Y-coord : Description UP ure to pressure UP tero pressure MOP	N/A inches N/A inches Pipeline Regulato ASME B31.4-2	2012	PASS
$\frac{\text{CALCULATED STRES}}{\text{Hoop Stress } (\sigma_{H}):}$ $\sigma_{H_itre=ma_MOP} = 1:$ $\sigma_{H_Live_Zero} = 2:$ $\sigma_{H_Tota_Zero} = 2:$ $\sigma_{H_Tota_MOP} = 2:$ $\sigma_{H_sSMYS_Zero} = 1:$ $\sigma_{H_sSMYS_Zero} = 5:$ $\text{Longitudinal Stress } (\sigma_{I}):$ $\sigma_{L_ive_MOP} = 3:$ $\sigma_{L_ive_MOP} = 3:$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 3.6% 1.0%	Variable <	Measurement Point X-coord : Measurement Point Y-coord : Description PP ure to pressure DP tero pressure MOP ure s @ Zero pressure	N/A inches N/A inches Pipeline Regulato ASME B31.4-2	2012	PASS
$\frac{\text{CALCULATED STRES}}{\text{Hoop Stress } (\sigma_{H}):}$ $\sigma_{H_{\perp} \text{internal}_{MOP}} = 11$ $\sigma_{H_{\perp} \text{tive}_{Zero}}$ $\sigma_{H_{\perp} \text{total}_{Zero}}$ $\sigma_{H_{\perp} \text{total}_{Zero}} = 22$ $\sigma_{H_{\perp} \text{sSMYS}_{Zero}} = 122$ $\sigma_{H_{\perp} \text{sSMYS}_{MOP}} = 52$ Longitudinal Stress (c_i): $\sigma_{L_{\perp} \text{tota}_{\perp} \text{Zero}} = 22$ $\sigma_{L_{\perp} \text{tota}_{\perp} \text{MOP}} = 12$ $\sigma_{L_{\perp} \text{tota}_{\perp} \text{Zero}} = 12$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 8.6% 1.0%	Variable <	Measurement Point X-coord : Measurement Point Y-coord : Description pp ure to pressure DP tero pressure MOP ure s @ Zero pressure s @ MOP MYS @ Zero pressure	N/A inches N/A inches Pipeline Regulato ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
$\frac{\text{CALCULATED STRES}}{\text{Hoop Stress } (\sigma_{H}):}$ $\sigma_{H_{\perp} \text{internal}_{MOP}} = 11$ $\sigma_{H_{\perp} \text{tive}_{Zero}}$ $\sigma_{H_{\perp} \text{total}_{Zero}}$ $\sigma_{H_{\perp} \text{total}_{Zero}} = 22$ $\sigma_{H_{\perp} \text{sSMYS}_{Zero}} = 122$ $\sigma_{H_{\perp} \text{sSMYS}_{MOP}} = 52$ Longitudinal Stress (c_i): $\sigma_{L_{\perp} \text{tota}_{\perp} \text{Zero}} = 22$ $\sigma_{L_{\perp} \text{tota}_{\perp} \text{MOP}} = 12$ $\sigma_{L_{\perp} \text{tota}_{\perp} \text{Zero}} = 12$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 3.6% 1.0% 1973 psi 1804 psi 5971 psi 1674 psi	Variable <	Measurement Point X-coord : Measurement Point Y-coord : Description pp ure to pressure DP tero pressure MOP ure s @ Zero pressure s @ MOP MYS @ Zero pressure	N/A inches N/A inches Pipeline Regulato ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	7184 psi 2032 psi 1509 psi 6691 psi 1410 psi 8.6% 1.0%	Variable <	Measurement Point X-coord : Measurement Point Y-coord : Description pp ure to pressure DP tero pressure MOP ure s @ Zero pressure s @ MOP MYS @ Zero pressure	N/A inches N/A inches Pipeline Regulato ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 3.6% 0% 1973 psi 1804 psi 5971 psi 1674 psi 5674 psi 5.6%	Variable < Internal Pressure @ MO	Measurement Point X-coord : Measurement Point Y-coord : Description P Irre to pressure MOP tero pressure MOP tero pressure s @ Zero pressure s @ MOP MYS @ Zero pressure MOP	N/A inches N/A inches Pipeline Regulato ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
$\frac{\text{CALCULATED STRES}}{\text{Hoop Stress } (\sigma_{H}):}$ $\sigma_{H_{\perp} \text{intermal}_{\parallel} \text{MOP}} = 1$ $\sigma_{H_{\perp} \text{Uve}_{\perp} \text{Zero}} = \sigma_{H_{\perp} \text{Total}_{\perp} \text{Zero}} = 0$ $\sigma_{H_{\perp} \text{Total}_{\perp} \text{Zero}} = 1$ $\sigma_{H_{\perp} \text{SSMYS}_{\perp} \text{MOP}} = 2$ $\text{Congitudinal Stress } (\sigma_{i}):$ $\sigma_{L_{\perp} \text{Uve}_{\perp} \text{MOP}} = 1$ $\sigma_{L_{\perp} \text{Uve}_{\perp} \text{MOP}} = 1$ $\sigma_{L_{\perp} \text{SSMYS}_{\perp} \text{Zero}} = 1$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 3.6% 1.0% 1973 psi 1804 psi 5971 psi 1674 psi 5.6% 2.8%	Variable < Internal Pressure @ MO	Measurement Point X-coord : Measurement Point Y-coord : Description DP ure to pressure MOP ure s @ Zero pressure s @ MOP MYS @ Zero pressure MOP	N/A inches N/A inches Pipeline Regulato ASME B31.4-2 ASME B31.4-2	2012 2012 2012	PASS PASS PASS
$\frac{\text{CALCULATED STRES}}{\text{Hoop Stress } (\sigma_{H}):}$ $\sigma_{H_{1}intemal_MOP} = 11$ $\sigma_{H_{Live_Zero}} = 22$ $\sigma_{H_{1}Total_MOP} = 22$ $\sigma_{H_{1}Total_MOP} = 22$ $\sigma_{H_{2}SSMYS_Zero} = 112$ $\sigma_{H_{2}SSMYS_MOP} = 52$ Longitudinal Stress (σ_{L}): $\sigma_{L_{1}Uve_MOP} = 22$ $\sigma_{L_{1}Uve_MOP} = 12$ $\sigma_{L_{2}WSMYS_MOP} = 12$ $\sigma_{L_{2}WSMYS_MOP} = 22$ Equivalent Stress (σ_{E}): $\sigma_{E_{2}Erop} = 12$ $\sigma_{E_{2}Erop} = 12$	7184 psi 2032 psi 1509 psi 5691 psi 1410 psi 3.6% 0% 1973 psi 1804 psi 5971 psi 1674 psi 5674 psi 5.6%	Variable < Internal Pressure @ MO	Measurement Point X-coord : Measurement Point Y-coord : Description PP ure to pressure MOP ure s @ Zero pressure s @ MOP MYS @ Zero pressure MOP o pressure PP	N/A inches N/A inches Pipeline Regulato ASME B31.4-2 ASME B31.4-2	2012 2012 2012 2012 2012	PASS PASS PASS

GENERAL NOTES:

- Please refer to "Table 3-Fatigue Endurance Limits, S_{FG} and S_{FU} for Various Steel Grades" on page 18 in API Recommended Practice 1102 when performing fatigue check calculations.

Example 3 Scenario – Drum Roller (Grid INPUT) Vehicle crossing Pipeline B

Pipeline B runs parallel to a rural road, which is in the process of being re-paved. The operator of Pipeline B has been contacted by the project manager overseeing the paving to inquire whether a drum roller being used on the project will be able to safely cross the line. Pipeline B is a liquid line consisting of a 6.625-inch outside diameter, 0.188-inch wall thickness, and an API Grade B pipe with a maximum operating pressure (MOP) of 720 psig. The line is buried 2.667 feet (32 inches) deep in coarse-grained soil with a density of 120 lb/ft³. The soil compaction is 95%. The temperature differential is 12°F, and the bedding angle is 60 degrees for this line.

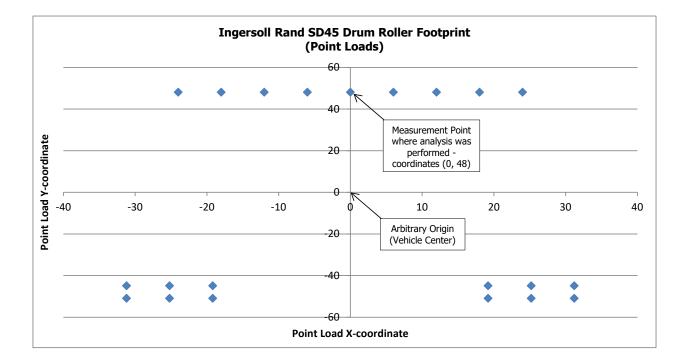
Example 3 involves the scenario of Pipeline B being crossed by an Ingersoll Rand SD45 Vibratory Smooth Drum Roller. This piece of construction equipment has a total vehicle operating weight of 10,598 lbs, which is distributed across its axles as follows: Drum Axle 5,399 lbs, and Tire Axle 5,199 lbs. Specifications from the manufacturer confirm the tire axle width is 5.2 feet, the drum axle width is 4.5 feet, and the axle separation is 6 feet. The tire contact width is 12 inches. In this example, the point under the center of the drum roller has been selected as a measurement point to perform the surface loading analysis. The coordinates for this measurement point are (x, y) = (0, 48), which are relative to the origin (0, 0), which was arbitrarily placed at the center of the vehicle.

General Inputs – Example 3:

PIPELINE INFORMATION: Pipeline B		
PIPELINE LOCATION: Parallel to Rural Road		
DATE: 11/14/13 1:37 PM		
SELECT UNITS: © English © Metric		
PIPE INPUT DATA	Variable Description	<u>Notes</u>
D = 6.625 inches	< Outside Diameter	
t = 0.188 inches	< Wall Thickness	
P _{intemal} = 720 psig	< Maximum Operating Pressure	
SMYS = 35,000 psi	< Specified Minimum Yield Strength	
ΔΤ = <u>12</u> °F	< Temperature Differential (T _{installed} - T _{operating})>	See NOTE #
SOIL INPUT DATA	Variable Description	Notes
$\rho = \frac{120}{100} \text{ lb/ft}^3$ H = 2.667 ft	< Soil Density < Depth of Cover	
H = 2.007 ft	< Depth of Cover	
Bedding Angle (θ):	—	
$\theta = 0 \text{ degrees} 0 \text{ to grees}$	< Bedding Angle (degrees)	
© 30 degrees © 150 degrees	bedding Angle (degrees)	
60 degrees 180 degrees		
© 90 degrees	Soil (Pipe Bedding) \longrightarrow	
Modulus of Soil Reaction (E'):		
C User Defined:	< Modulus of Soil Reaction (Defined by User)	
E' = <mark>N/A</mark> psi		
Calculated from Lookup Tables:	< Modulus of Soil Reaction (Calculated from tables)	
Soil Type:	,	
C Fine-grained with less than 25% sand content		
Coarse-grained with fines		
Coarse-grained with little or no fines		
Soil Compaction:		
© 80%		
© 90%		
• 95%		
C 100%		
Select Soil Load Equation:		
Prism Load Equation		
Trap Door Equation		

MISCELLANEOUS INPUT	Variable Description	Note
Impact Factor (IF):		
Vehicle Type:	< Vehicle Type: Used to determine Impact Factor	
💭 Highway Vehicle (i.e. Semi-truck)	< Vehicles with high-pressure tires>	See NO
 Farm/Construction Equipment (i.e. Vehicle with large off-road tires) 	Vehicles with low-pressure tires>	See NO
💭 Track Vehicle (i.e. Dozer or Excavator)	< Track Vehicles with steel or rubber tracks	
Pavement Type:	< Pavement Type: Used to determine Impact Factor	
💭 Rigid Pavement (i.e. Concrete)		
Flexible Pavement (i.e. Asphalt, Gravel, or Bare Soil)		
Select Equivalent Stress Equation:		
Tresca Equation	< MORE conservative Equivalent stress equation	
🔿 Von Mises Equation	< LESS conservative Equivalent stress equation	
Select Pipeline Regulatory Code:		
B31.4	< ASME Code for Liquid Pressure Piping (2012)>	See NO
🔿 B31.8	< ASME Code for Gas Pressure Piping (2010)>	See NO
CSA-Z662	< CSA Code for Oil and Gas Pipeline Systems (2011)>	See NO
💭 User Defined Pipeline Stress Limits:	< Pipeline stress limits manually input by user>	See NO
$\sigma_{\text{Hoop 96SMYS}} = N/A$	······································	
$\sigma_{\text{Longitudinal_%SMYS}} = \frac{N/A}{N/A}$		
$\sigma_{Equivalent_{96SMYS}} = N/A$		
	ly be used if the actual temperature differential is unknown.	
	Door Equation, the program assumes soil cohesion is equal to zero	
	si should be considered high-pressure tires when using this calcul	ator.
NOTE #4: Tire pressures LESS THAN 30 psi should be consid	dered low-pressure tires when using this calculator.	

- these codes will require the programming for this calculator to be modified in order to maintain proper functionality in accoordance with the latest versions of the ASME pipeline codes.
- **NOTE #6:** The Canadian Standards Association (CSA) recommends in CSA-Z662 that the pipeline owner/operator develop stress limits for their specific pipeline based on the design requirements set forth in the CSA-Z662 code. However, if these limits are unknown, the user may select the "CSA-Z662" pipeline regulatory code, which has the following default stress limits: $\sigma_{Hoop} = 0.9$ SMYS, $\sigma_{Longitudinal} = 0.9$ SMYS, and $\sigma_{Equivalent} = 0.9$ SMYS.
- NOTE #7: Stress Limits defined by user must be entered in terms of percent SMYS (i.e. a stress limit of 90% should be entered as 0.9).


Vehicle Inputs – Example 3:

VEHICLE INFORMATION:	Ingersoll Rand SD45 Vibratory Smo	oth Drum Roller			
VEHICLE TYPE:	Drum Front Axle with Tire Rear Axl				
CALCULATE: Vehicle Grid I	nput				
Measurement Point X-coordi	nate, in: 0.0	Load, lbs	X, in	Y, in	
Measurement Point Y-coordi	nate, in: 48.0	599.8889	-24	48	
		<mark>599.8889</mark>	-18	48	
		599.8889	-12	48	
		599.8889	-6	48	
SENERAL NOTES:		599.8889	0	48	
A "Run-time error '13' : Type r		599.8889	6	48	
one of the user inputs in the "L		599.8889	12	48	
on-numeric. This input must l		599.8889	18	48	
alue for the program to function	on propeny.	599.8889 216.625	24 -31.2	48 -45	
		216.625	-31.2	-45 -45	
		216.625	-25.2	-45	
		216.625	-31.2	-51	
		216.625	-25.2	-51	
		216.625	-19.2	-51	
		216.625	19.2	-45	
		216.625	25.2	-45	
		216.625	31.2	-45	
		216.625	19.2	-51	
		216.625	25.2	-51	
		216.625	31.2	-51	

Graph of Vehicle Footprint (Point Loads):

Below is a graph of the vehicle footprint (or point loads), which was created to analyze the Ingersoll Rand SD45 Vibratory Smooth Drum Roller vehicle type. The X-Y-coordinates for this graph are given in the above screen capture of the "Grid INPUT" tab. It is important to note that while this specific example decided to analyze the pressure exerted on the surface of the pipe due to the vehicle load that occurs under the drum roller, measurement point (0, 48), any measurement point relative to the arbitrary origin could have been selected and analyzed.

Results – Example 3:

Results for	Surface	Loading	Calculation
Negarig for	Junace	LUduing	calculation

PIPELINE INFORMATION: PIPELINE LOCATION:	Pipeline I Parallel to	B o Rural Road				
VEHICLE INFORMATION:		Rand SD45 Vibratory Smooth D	Nrum Boller			
VEHICLE TYPE:		nt Axle with Tire Rear Axle	ann Koner			
DATE:	11/14/201					
DATE.	11/14/201	13 14.35				
<u>GENERAL INPUTS</u>		VEHICLE INPUTS		LOCATION OF MAXIMUM		
D = 6.625 inches (Outside Diameter)		Axle or Track Separation 1:	N/A ft	The maximum pressure		
t = 0.188 inches (Wall Thickness)		Axle Separation 2 :	N/A ft	exerted on the surface of		
P _{internal} = 720 psig			Axle Width :	N/A ft	the pipe due to vehicle	
SMYS = 35000 psi	(Specified	Minimum Yield Strength)	Track Length :	N/A ft	point loa	ad occurs:
ΔT = 12 °F	(Temperat	ure Differential)	Axle 1 or Track Vehicle Load :	N/A lbs		
$\rho = 120 \text{ lb/ft}^3$	120 lb/ft ³ (Density)		Contact Width 1 :	N/A inches	N/A: For Grid INPUT tab	
H = 2.667 ft (Depth of Cover)		Tire Pressure 1 :	N/A psi	calculations, the location		
$\theta = 60 \text{ degrees} (\text{Bedding Angle})$		Axle Load 2 :	N/A lbs	of the maximum point		
E' = N/A psi	(Modulus d	of Soil Reaction)	Contact Width 2 :	N/A inches	load is d	determined
IF = 1.25	(Impact Fac	ctor)	Tire Pressure 2 :	N/A psi	manual	ly by the user.
Soil Load Equation: Prism Lo	oad Equation	1	Axle Load 3 :	N/A lbs		· ·
φ = N/A	degrees		Contact Width 3 :	N/A inches		
Equivalent Stress Equation:	Tresca Equ	ation	Tire Pressure 3 :	N/A psi		
			Measurement Point X-coord :	0 inches		
			Measurement Point Y-coord :	48 inches		
			1			
CALCULATED STRESS DATA		Variable Description		Pipeline Regulatory Code		D / F 11
		vanable	Description	Pipeline Regulato	Ty coue	<u>Pass / Fail</u>
Hoop Stress (σ _H):		vanable i		Pipeline Regulato	<u>ry code</u>	Pass / Fail
$\sigma_{H_{Internal_{MOP}}} = 12686$	s psi	< Internal Pressure @ MOP	,	Pipeline Regulato	<u>ty code</u>	Pass / Fall
$\sigma_{H_Internal_MOP} = 12686$ $\sigma_{H_Live_Zero} = 1207$	5 psi 4 7 psi 4	< Internal Pressure @ MOP < Live Load @ Zero pressur	,		<u>ry coue</u>	Pass / Fail
$\sigma_{\text{H_linternal_MOP}} = 12686$ $\sigma_{\text{H_live_Zero}} = 1207$ $\sigma_{\text{H_live_MOP}} = 957$	5 psi 7 psi 2 psi	< Internal Pressure @ MOP < Live Load @ Zero pressur < Live Load @ MOP	, e			
$ \begin{aligned} \sigma_{\text{H_Internal_MOP}} &= 12686 \\ \sigma_{\text{H_Live_Zero}} &= 1207 \\ \sigma_{\text{H_Live_MOP}} &= 957 \\ \sigma_{\text{H_Total_Zero}} &= 2496 \end{aligned} $	5 psi 4 7 psi 4 2 psi 4 5 psi 4	< Internal Pressure @ MOP < Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero	, e pressure	<u>Pipeline Regulato</u>	<u>ry code</u>	Pass / Fail
$\sigma_{H_Internal_MOP} = 12686$ $\sigma_{H_Live_Zero} = 1207$ $\sigma_{H_Live_MOP} = 952$ $\sigma_{H_Total_Zero} = 2496$ $\sigma_{H_Total_MOP} = 14656$	5 psi 4 7 psi 4 2 psi 4 5 psi 4 5 psi 4	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOF	e pressure			
$\sigma_{H_Internal_MOP} = 12686$ $\sigma_{H_Live_Zero} = 1207$ $\sigma_{H_Live_MOP} = 952$ $\sigma_{H_Total_Zero} = 2496$ $\sigma_{H_Total_MOP} = 14656$ $\sigma_{H_SSMYS_Zero} = 7.1\%$	o psi o 7 psi o 2 psi o 5 psi o 5 ssi o	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOF Hoop Stress %SMYS @ Zero	e pressure ro pressure	ASME B31.4-2	012	PASS
$\sigma_{H_Internal_MOP} = 12686$ $\sigma_{H_Live_Zero} = 1207$ $\sigma_{H_Live_MOP} = 952$ $\sigma_{H_Total_Zero} = 2496$ $\sigma_{H_Total_MOP} = 14656$	o psi o 7 psi o 2 psi o 5 psi o 5 ssi o	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOF	e pressure ro pressure		012	
$\sigma_{H_internal_MOP} = 12686$ $\sigma_{H_Live_Zero} = 1207$ $\sigma_{H_Live_MOP} = 952$ $\sigma_{H_Total_Zero} = 2496$ $\sigma_{H_Total_MOP} = 14656$ $\sigma_{H_SSMYS_Zero} = 7.1\%$ $\sigma_{H_SSMYS_MOP} = 41.9\%$	o psi o 7 psi o 2 psi o 5 psi o 5 ssi o	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOF Hoop Stress %SMYS @ Zero	e pressure ro pressure	ASME B31.4-2	012	PASS
$ \sigma_{H_lnternal_MOP} = 12686 \\ \sigma_{H_Live_Zero} = 1207 \\ \sigma_{H_Live_MOP} = 952 \\ \sigma_{H_Total_Zero} = 2496 \\ \sigma_{H_Total_MOP} = 14656 \\ \sigma_{H_%SMYS_Zero} = 7.1\% \\ \sigma_{H_\%SMYS_MOP} = 41.9\% $	5 psi 4 7 psi 4 2 psi 4 5 psi 4 5 psi 4 5 s	Internal Pressure @ MOF Live Load @ Zero pressur Live Load @ MOP Total Hoop Stress @ Zero Total Hoop Stress @ MOF Hoop Stress %SMYS @ Zero	e pressure ro pressure OP	ASME B31.4-2	012	PASS
$\sigma_{H_{internal_MOP}} = 12686$ $\sigma_{H_{ive_Zero}} = 1207$ $\sigma_{H_{ive_Zero}} = 957$ $\sigma_{H_{ive_MOP}} = 9456$ $\sigma_{H_{ive_MOP}} = 14656$ $\sigma_{H_{ive_MOP}} = 14656$ $\sigma_{H_{ive_MOP}} = 7.1\%$ $\sigma_{H_{ive_MOP}} = 41.9\%$ Longitudinal Stress (σ_i): $\sigma_{L_{ive_Zero}} = 1201$	psi · · · · · · · · · · · · · · · · · · ·	< Internal Pressure @ MOP < Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero < Total Hoop Stress @ MOF < Hoop Stress %SMYS @ Me	e pressure ro pressure OP	ASME B31.4-2	012	PASS
$ \begin{aligned} \sigma_{H_{internal_MOP}} &= 12686 \\ \sigma_{H_{i}Live_Zero} &= 1207 \\ \sigma_{H_{i}Live_Zero} &= 957 \\ \sigma_{H_{i}Total_Zero} &= 2496 \\ \sigma_{H_{i}Total_Zero} &= 14656 \\ \sigma_{H_{i}SSMYS_Zero} &= 7.1\% \\ \sigma_{H_{i}SSMYS_MOP} &= 41.9\% \\ \end{aligned} $	psi · · · · · · · · · · · · · · · · · · ·	< Internal Pressure @ MOP < Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero < Total Hoop Stress %SMYS @ Ze < Hoop Stress %SMYS @ M < Live Load @ Zero pressur	e pressure o pressure OP e	ASME B31.4-2	012	PASS
$ \sigma_{H_{internal_MOP}} = 12686 \\ \sigma_{H_{i}Live_Zero} = 1207 \\ \sigma_{H_{i}Live_Zero} = 957 \\ \sigma_{H_{i}Total_Zero} = 2496 \\ \sigma_{H_{i}Total_Zero} = 14656 \\ \sigma_{H_{i}SSMYS_Zero} = 7.1\% \\ \sigma_{H_{i}SSMYS_Zero} = 7.1\% \\ \textbf{Congitudinal Stress } (\sigma_i): \\ \textbf{Congitudinal Stress } (\sigma_i): \\ \sigma_{L_{i}Uve_Zero} = 1201 \\ \sigma_{L_{i}Uve_ZOP} = 1115 \\ \sigma_{L_{i}Total_Zero} = 3928 \\ \textbf{Congitudinal_Zero} = 3928 \\ \textbf{Conglexes} = 1201 \\ \textbf{Conglexes}$	psi v psi v psi v psi v psi v psi v psi v psi v	< lnternal Pressure @ MOP < Live Load @ Zero pressur < Total Hoop Stress @ Zero < Total Hoop Stress @ MOP < Hoop Stress %SMYS @ Ze < Live Load @ Zero pressur < Live Load @ MOP	e pressure o pressure DP e @ Zero pressure	ASME B31.4-2	012	PASS
	2 psi 4 2 psi 4 5 psi 4 5 psi 4 5 si 4 5 si 4 6 si 4 6 si 4 7 si 4 8 si	< lnternal Pressure @ MOP < Live Load @ Zero pressur < Total Hoop Stress @ Zero < Total Hoop Stress @ MOP < Hoop Stress %SMYS @ Ze < Hoop Stress %SMYS @ M < Live Load @ Zero pressur < Live Load @ MOP < Live Load @ MOP	e pressure o pressure OP e @ Zero pressure @ MOP	ASME B31.4-2	012 012	PASS
	5 psi	< Internal Pressure @ MOF < Live Load @ Zero pressur < Total Hoop Stress @ Zero < Total Hoop Stress @ MOF < Hoop Stress %SMYS @ Ze < Live Load @ Zero pressur < Live Load @ Zero pressur < Live Load @ MOP < Total Longitudinal Stress	e pressure o pressure OP e @ Zero pressure @ MOP (S @ Zero pressure	ASME B31.4-2 ASME B31.4-2	012 012 012	PASS PASS
$ \begin{array}{c} \sigma_{H_internal_MOP} \\ \sigma_{H_itve_Zero} \\ \sigma_{H_ive_MOP} \\ \sigma_{H_ive_MOP} \\ \sigma_{H_ive_MOP} \\ \sigma_{H_rotal_Zero} \\ \sigma_{H_rotal_MOP} \\ \sigma_{H_sSMYS_Zero} \\ \sigma_{H_sSMYS_MOP} \\ \end{array} \begin{array}{c} 12656 \\ 2496 \\ 7.1\% \\ 41.9\% \\ \end{array} $	5 psi	< Internal Pressure @ MOF < Live Load @ Zero pressur < Total Hoop Stress @ Zero < Total Hoop Stress @ MOF < Hoop Stress %SMYS @ M < Live Load @ Zero pressur < Live Load @ MOP < Live Load @ MOP < Total Longitudinal Stress %SMY	e pressure o pressure OP e @ Zero pressure @ MOP (S @ Zero pressure	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	012 012 012	PASS PASS PASS
$ \begin{array}{c} \sigma_{H_{1} \text{Internal}_{MOP}} \\ \sigma_{H_{1} \text{Live}_{Zero}} \\ \sigma_{H_{1} \text{Live}_{MOP}} \\ \sigma_{H_{1} \text{Ive}_{MOP}} \\ \sigma_{H_{1} \text{Total}_{Zero}} \\ \sigma_{H_{1} \text{Total}_{Zero}} \\ \sigma_{H_{1} \text{SSMYS}_{Zero}} \\ \sigma_{H_{2} \text{SSMYS}_{MOP}} \\ \textbf{Longitudinal Stress} (\sigma_{t}): \\ \sigma_{L_{1} \text{Ve}_{MOP}} \\ \sigma_{L_{1} \text{Uve}_{MOP}} \\ \sigma_{L_{1} \text{Uve}_{MOP}} \\ \sigma_{L_{3} \text{SSMYS}_{MOP}} \\ \textbf{Equivalent Stress} (\sigma_{e}): \\ \end{array} $	5 psi 7 psi 5 psi 5 psi 6 psi 9	< liternal Pressure @ MOF < Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero < Hoop Stress %SMYS @ Ze < Hoop Stress %SMYS @ M < Live Load @ Zero pressur < Live Load @ Zero pressur < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress %SM < Longitudinal Stress %SM	e pressure o pressure OP e @ Zero pressure @ MOP YS @ Zero pressure YS @ MOP	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	012 012 012	PASS PASS PASS
$ \begin{aligned} \sigma_{H_{Litvermal_MOP}} &= 12686 \\ \sigma_{H_{Live_Zero}} &= 1207 \\ \sigma_{H_{Live_Zero}} &= 957 \\ \sigma_{H_{Total_Zero}} &= 2496 \\ \sigma_{H_{Total_Zero}} &= 14656 \\ \sigma_{H_{SSMYS_Zero}} &= 7.1\% \\ \sigma_{H_{SSMYS_Zero}} &= 7.1\% \\ \sigma_{H_{SSMYS_Zero}} &= 1200 \\ \sigma_{L_{Live_Zero}} &= 1200 \\ \sigma_{L_{Live_MOP}} &= 1200 \\ \sigma_{L_{Total_Zero}} &= 3922 \\ \sigma_{L_{Total_Zero}} &= 3922 \\ \sigma_{L_{Total_Zero}} &= 3922 \\ \sigma_{L_{SSMYS_Zero}} &= 7577 \\ \sigma_{L_{SSMYS_Zero}} &= 7577 \\ \sigma_{L_{SSMYS_Zero}} &= 7577 \\ \sigma_{L_{SSMYS_Zero}} &= 11.2\% \\ \sigma_{L_{SSMYS_Zero}} &= 3922 \\ \sigma_{L_{SSMY_ZSZ} &= 392 \\ \sigma_{L_{SSMY_ZSZ} &= 392 \\ \sigma_{L_{SSMY_Z}Ero_Zero} &= 3922 \\ \sigma_{L_{SSMY_ZSZ} &= 392 \\ \sigma_{L_{SSMY_ZSZ} &= 392 \\ \sigma_{L_{SSMY_ZSZ} &= $	5 psi	< Live Load @ Zero pressur < Live Load @ Zero pressur < Total Hoop Stress @ Xero < Total Hoop Stress @ MOF < Hoop Stress %SMYS @ Xe < Live Load @ Zero pressur < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress < Longitudinal Stress %SMY < Longitudinal Stress %SMY	e pressure or pressure OP e @ Zero pressure @ MOP (S @ Zero pressure (S @ MOP pressure	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	012 012 012	PASS PASS PASS
$ \begin{aligned} \sigma_{H_{internal_MOP}} &= 12686 \\ \sigma_{H_{i}Live_Zero} &= 1207 \\ \sigma_{H_{i}Live_Zero} &= 957 \\ \sigma_{H_{i}Total_MOP} &= 957 \\ \sigma_{H_{i}Total_Zero} &= 2496 \\ \sigma_{H_{i}Total_MOP} &= 14656 \\ \sigma_{H_{i}SSMYS_Zero} &= 7.1\% \\ \sigma_{H_{i}SSMYS_Zero} &= 7.1\% \\ \sigma_{H_{i}SSMYS_Zero} &= 1207 \\ \sigma_{L_{i}Uve_MOP} &= 1112 \\ \sigma_{L_{i}Uve_MOP} &= 1112 \\ \sigma_{L_{i}Total_Zero} &= 3928 \\ \sigma_{L_{i}Total_Zero} &= 3928 \\ \sigma_{L_{i}Total_Zero} &= 3928 \\ \sigma_{L_{i}SSMYS_Zero} &= 11.2\% \\ \sigma_{L_{i}SSMYS_Zero} &= 11.2\% \\ \sigma_{L_{i}SSMYS_Zero} &= 11.2\% \\ \sigma_{L_{i}SSMYS_Zero} &= 11.2\% \\ \hline \end{bmatrix} $	5 psi 7 psi 5 psi 5 psi 6 psi 7 psi 9	< liternal Pressure @ MOF < Live Load @ Zero pressur < Live Load @ MOP < Total Hoop Stress @ Zero < Hoop Stress %SMYS @ Ze < Hoop Stress %SMYS @ M < Live Load @ Zero pressur < Live Load @ Zero pressur < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress %SM < Longitudinal Stress %SM	e pressure or pressure OP e @ Zero pressure @ MOP (S @ Zero pressure (S @ MOP pressure	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	012 012 012 012	PASS PASS PASS
$ \begin{array}{r} \sigma_{H_{1} \text{Internal}_{MOP}} = 12686 \\ \sigma_{H_{1} \text{Live}_{Zero}} = 1207 \\ \sigma_{H_{1} \text{Live}_{Zero}} = 957 \\ \sigma_{H_{1} \text{Total}_{MOP}} = 957 \\ \sigma_{H_{1} \text{Total}_{Zero}} = 2496 \\ \sigma_{H_{1} \text{Total}_{Zero}} = 14656 \\ \sigma_{H_{3} \text{SMYS}_{Zero}} = 7.1\% \\ \sigma_{H_{3} \text{SMYS}_{Zero}} = 1201 \\ \sigma_{L_{4} \text{SSMYS}_{Zero}} = 1201 \\ \sigma_{L_{5} \text{SSMYS}_{Zero}} = 1120 \\ \sigma_{L_{5} \text{SSMYS}_{Zero}} = 120 \\ \sigma_{L_{5} \text{SSMY}_{Zero}} = 120 \\ \sigma_{L_{5} \text{SSMY}_{Zero} = 120 \\ \sigma_{L_{5} \text{SSMY}_{Zero}} = 120 \\ \sigma_{L_{5} \text{SSMY}_{ZE}} = 120 \\ \sigma_{L_{5} \text{SSM}_$	5 psi 7 psi 5 psi 5 psi 6 psi 7 psi 9	< Internal Pressure @ MOP < Live Load @ Zero pressur < Total Hoop Stress @ Zero < Total Hoop Stress @ MOP < Hoop Stress %SMYS @ M < Live Load @ Zero pressur < Live Load @ MOP < Total Longitudinal Stress < Total Longitudinal Stress %SMY < Longitudinal Stress %SM < Longitudinal Stress %SM < Equivalent Stress @ Zero < Equivalent Stress @ MOP	e pressure opressure OP e @ Zero pressure @ MOP (S @ Zero pressure (S @ MOP pressure @ Zero pressure	ASME B31.4-2 ASME B31.4-2 ASME B31.4-2 ASME B31.4-2	012 012 012 012 012 012	PASS PASS PASS PASS

GENERAL NOTES:

- Please refer to "Table 3-Fatigue Endurance Limits, S_{FG} and S_{FU} for Various Steel Grades" on page 18 in API Recommended Practice 1102 when performing fatigue check calculations.